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Abstract Improving water management in water stressed-regions requires reliable seasonal precipitation
predication, which remains a grand challenge. Numerous statistical and dynamical model simulations have
been developed for predicting precipitation. However, both types of models offer limited seasonal predict-
ability. This study outlines a hybrid statistical-dynamical modeling framework for predicting seasonal precip-
itation. The dynamical component relies on the physically based North American Multi-Model Ensemble
(NMME) model simulations (99 ensemble members). The statistical component relies on a multivariate
Bayesian-based model that relates precipitation to atmosphere-ocean teleconnections (also known as an
analog-year statistical model). Here the Pacific Decadal Oscillation (PDO), Multivariate ENSO Index (MEI), and
Atlantic Multidecadal Oscillation (AMO) are used in the statistical component. The dynamical and statistical
predictions are linked using the so-called Expert Advice algorithm, which offers an ensemble response (as
an alternative to the ensemble mean). The latter part leads to the best precipitation prediction based on
contributing statistical and dynamical ensembles. It combines the strength of physically based dynamical
simulations and the capability of an analog-year model. An application of the framework in the southwest-
ern United States, which has suffered from major droughts over the past decade, improves seasonal precipi-
tation predictions (3–5 month lead time) by 5–60% relative to the NMME simulations. Overall, the hybrid
framework performs better in predicting negative precipitation anomalies (10–60% improvement over
NMME) than positive precipitation anomalies (5–25% improvement over NMME). The results indicate that
the framework would likely improve our ability to predict droughts such as the 2012–2014 event in the
western United States that resulted in significant socioeconomic impacts.

1. Introduction

Water supply reliability is a major challenge in the southwestern United States (U.S.), with its growing popu-
lation and industry. The region has experienced several droughts in the past [Seager et al., 2005; Woodhouse
et al., 2010; Shukla et al., 2015a, 2015b; Cheng et al., 2016] and is likely to experience more frequent and
severe droughts in the future [Seager et al., 2007; Cayan et al., 2010; Cook et al., 2015]. The water supply in
some parts of the region (e.g., California and Nevada) relies on winter precipitation, when most of the
annual rainfall occurs [Cayan et al., 1998]. The ongoing 2012–2015 California drought has led to more than
a year’s worth of precipitation deficit [Savtchenko et al., 2015]. The rainy seasons in 2014 and 2015 were also
the warmest 2 years in the past 120 years [Shukla et al., 2015b; AghaKouchak et al., 2014]. Such combinations
of below-normal precipitation and high temperature can significantly exacerbate the impacts of drought by
promoting wildfires [Westerling et al., 2003; Keeley et al., 2009] and reducing snowpack in high elevations
[Shukla et al., 2015b].

The sustainable management of water resources in a region with frequent droughts requires timely and reli-
able seasonal precipitation forecasts. A community report on California drought issues that was developed
based on inputs from decision-makers and stakeholders identified seasonal drought prediction as the key
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challenge facing the research community [AghaKouchak et al., 2015]. The observed relationship between
precipitation and the ocean-atmosphere teleconnections [Ropelewski and Halpert, 1986; Bradley et al., 1987;
McCabe and Dettinger, 1999] has inspired the investigation and use of statistical analog-year models for sea-
sonal precipitation forecasting [e.g., Hartmann et al., 2008; Wu et al., 2009; Schepen et al., 2012; Peng et al.,
2014]. Many alternatives of analog-year precipitation prediction methods have been explored [e.g., Saha
et al., 2014; Zhang et al., 2007]. Although such models display some prediction skills, their predictability is
limited due to the complex relationship between precipitation and the known teleconnections [e.g., Folland
et al., 1991; Gershunov, 1998; Obled et al., 2002; Rajeevan et al., 2007].

Physically based dynamical models have also been explored for seasonal precipitation prediction. Unlike
statistical techniques, these models rely on the dynamical interactions among the land, ocean, and atmos-
phere, which are resolved using model parameterization and numerical simulations [e.g., Zhang et al., 2007;
Merryfield et al., 2013; Saha et al., 2014]. Progress in dynamical model simulations over the past three deca-
des has led to better and more reliable predictions. However, the predictability of dynamical model simula-
tions is still rather limited and is highly variable in space and time [Yang et al., 2009; Wang et al., 2009; Kim
et al., 2012; Infanti and Kirtman, 2015; Jia et al., 2015]. Previous studies have shown that the forecasting skill
of dynamical models is mainly explained by the El Nino-Southern Oscillation (ENSO) variability [Kumar et al.,
2007; Wang et al., 2009; Cohen and Jones, 2011], which itself does not fully account for the total variability in
precipitation [Gao et al., 2006]. To overcome, the limitations of individual dynamical models and benefit
from the strength of a diverse set of models, there has been a growing tendency to use multiple models
and combine their forecasts [Hewitt, 2004; Palmer et al., 2004; Bougeault et al., 2010]. Recently, a multiagency
effort led to the development of the North American Multi-Model Ensemble (NMME) [Kirtman et al., 2014],
which has provided climate forecasts ranging from intra-seasonal to inter-seasonal scales. The NMME
ensemble average generally offers better predictions than individual contributing models do for different
regions [Becker et al., 2014; Kirtman et al., 2014; Ma et al., 2015]; however, the reliability of the precipitation
forecasts in general is still rather low [Becker et al., 2014; Kirtman et al., 2014]. As an example, Figure 1 shows
the observed and NMME-predicted anomalies for December 2014 to February 2015 precipitation (DJF
2014), from a forecast initial condition in October 2014. As shown, the NMME’s precipitation prediction for
DJF 2014 was not consistent with the observations in the western U.S. (i.e., the NMME indicated a positive
precipitation anomaly, but the region experienced one of its most extreme droughts). Similar maps based
on different initialization dates can be found through Climate Prediction Center (http://www.cpc.ncep.noaa.
gov/products/NMME/http://www.cpc.ncep.noaa.gov/products/NMME/).

Previous studies have argued that combining statistical and dynamical models can improve seasonal pre-
cipitation prediction [Coelho et al., 2004; Schepen et al., 2012]. This study outlines a hybrid framework for
combining dynamical and statistical seasonal precipitation forecasts to improve their skill, with consequent
benefits for improved drought prediction in the southwest U.S. and other regions. The proposed hybrid
framework is fundamentally different from the statistical postprocessing approaches in which a statistical
model is used to combine multiple dynamical models, e.g., by weighing the ensemble members [Raftery
et al., 2005; Luo et al., 2007; Schepen and Wang, 2013]. It follows instead a hierarchical approach also taken
by Schepen et al. [2014], where dynamical and statistical models work in parallel and offer their own predic-
tions, and are subsequently merged into a single prediction. Here the dynamical component is based on
the available NMME simulations. The statistical forecasts employ a Bayesian analog-year approach that sim-
ulates precipitation based on a number of conditioning factors, such as the Pacific Decadal Oscillation
(PDO), Multivariate ENSO Index (MEI), and Atlantic Multidecadal Oscillation (AMO). The statistical analog-
year forecasts and the NMME dynamical model simulations are then combined via a multimodel averaging
framework. In contrast to the conventional ensemble mean, the weighted averaging techniques such as
Bayesian-based techniques [Raftery et al., 2005; Buser et al., 2010; Najafi and Moradkhani, 2015] and expert-
based algorithms [Cheng and AghaKouchak, 2015] distribute the weights based on the performance of each
model during a training period. The final ensemble response from weighted averaging techniques generally
outperforms the single best model [Weigel et al., 2008] and the simple ensemble mean, except under partic-
ular circumstances such as extremely large variability in models [Weigel et al., 2010]. This study uses the so-
called Expert Advice (hereafter, EA) algorithm described in Cheng and AghaKouchak [2015], which returns
the weighted average of the ensemble that is supposedly the best response from the ensemble of statistical
and dynamical simulations.
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2. Study Area and Data Resources

This study focuses on seasonal precipitation forecasting in California and Nevada. This region has recently
suffered from severe droughts, and reliable forecasts have become crucial for improving water manage-
ment. In California, 75% of the annual precipitation occurs between November and March (i.e., rainy sea-
son), with the half occurring between December and February [Shukla et al., 2015a]. Given the strong
seasonality of precipitation in the region, water management primarily relies on rainy season precipitation.
Thus, this study focuses on precipitation forecasting during the rainy season with different lead times. The

Figure 1. Comparison between (a) the observed precipitation and (b) the NMME simulation for the anomalies of the precipitation rate
from December 2014 to February 2015. The forecast initial condition is set to October 2014. Note that the color bars in the maps are not in
the same scale.
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forecast periods begin from November, December, and January of each year and continues to March; that
is, 3–5 month lead times (i.e., NDJ, NDJF, NDJFM, DJF, DJFM, and JFM). All forecasts are initiated on October.

This study proposes a hybrid method to improve precipitation forecasts by combining predictions based on
the dynamical model simulations with statistical predictions that leverage atmosphere-ocean teleconnec-
tions with the seasonal precipitation. The dynamical model simulations with different lead times are
obtained from the North American Multi-Model Ensemble (NMME) [Kirtman et al., 2014]. Retrospective
NMME simulations for January 1982 to December 2010 are available at the International Research Institute
for Climate and Society (IRI)’s climate data library. Real-time forecasts of NMME are also available since
August 2011 except a few models (CMC1-CanCM3 and CMC2-CanCM4), which are available since December
2011. To avoid discrepancies in the number of models form one year to another, we excluded 2011 simula-
tions from our analysis and used the rest of data during 1982–2014 for which all model simulations were
available. The observed reference precipitation is based on a gridded station-based data record developed
for western U.S. forecasting and verification purposes [Wood, 2008; Tang et al., 2009].

3. Hybrid Forecast Model

This study proposes a hybrid precipitation prediction framework that combines the dynamical NMME fore-
casts with statistical simulations in each 18 3 18 grid cell across the study area. The purpose of combining
these two types of models is to select the best forecasts from the ensemble of dynamical and statistical pre-
dictions. Figure 2 shows an overview of the proposed hybrid precipitation prediction model. The dynamical
(Figure 2a) and statistical (Figure 2b) simulations run in parallel; each leads to an ensemble of predictions.
Then, the forecast ensembles produced from the dynamical and statistical model simulations are overlaid
to form the final ensemble (Figure 2c). Last, the EA algorithm, trained with model performance in the past,
finds the best ensemble response from the statistical and dynamical predictions (Figure 2d).

3.1. Dynamical Model Simulations
The North America Multi-Model Ensemble (NMME) [Kirtman et al., 2014] is an ensemble of simulations from
multiple dynamical models and provides probabilistic forecasts with some information regarding forecast
uncertainty. Each dynamical model contributes a certain number of ensemble members. In this study, we
picked an ensemble of 99 members from eight models which are used by the Climate Prediction Center (CPC)
for the operational forecasts (i.e., CMC1-CanCM3 [10], CMC2-CanCM4 [10], COLA-RSMAS-CCSM4 [10], GFDL-
CM2p1-aer04 [10], GFDL-CM2p5-FLOR-A06 [12], GFDL-CM2p5-FLOR-B01 [12], NASA-GMAO-062012 [11], and
NCEP-CFSv2 [24]) and used the ensemble mean of each model in the hybrid forecast model that is discussed
in following sections. We studied the NMME precipitation forecasts beginning from November (initialized in
October) with up to a 5 month lead time (i.e., November–March, NDJFM) during 1982–2014, except the year
2011 since some NMME models’ data are not available for 2011. This is the rainy season for the study area.

3.2. Statistical Analog-Year Simulations
Several studies have discussed the impacts of atmosphere-ocean teleconnections on seasonal precipita-
tion patterns [Rasmusson and Wallace, 1983; Ropelewski and Halpert, 1986; Bradley et al., 1987; McCabe
and Dettinger, 1999; Kurtzman and Scanlon, 2007; DeFlorio et al., 2013]. The ENSO, which represents the
fluctuation of sea surface temperature (SST) and air pressure in the tropical eastern Pacific Ocean, affects
regional precipitation levels, across several regions of the globe including North America [Bradley et al.,
1987; Redmond and Koch, 1991; Diaz and Kiladis, 1992]. The above-normal SST (warm phase or El Nino)
and below-normal SST (cold phase or La Nina) in the tropical Pacific Ocean have different climatic
impacts [Bradley et al., 1987; Hoerling et al., 1997; Trenberth, 1984, 1997] with variable significance,
depending on the signal’s strength [Kiladis and Diaz, 1989; Redmond and Koch, 1991]. For instance, the
above-normal precipitation in southern California is usually associated with El Nino episodes [Redmond
and Koch, 1991], whereas precipitation over northern California does not show a strong association with
either El Nino or La Nina episodes [McCabe and Dettinger, 1999]. However, the collective information
from ENSO signals and the long-term fluctuations in the North Pacific Ocean-indicated as the Pacific
Decadal Oscillation (PDO) can improve the precipitation prediction skill in the western U.S. [McCabe and
Dettinger, 1999]. In addition, the Atlantic Multidecadal Oscillation (AMO), which reflects the long-term
changes in the sea surface temperature of the North Atlantic Ocean, affects precipitation and drought
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frequency over North America [McCabe et al., 2004]. The two major droughts in the twentieth century
(1930s and 1950s) occurred during the positive phase of AMO and negative phase of PDO between 1925
and 1965 [McCabe et al., 2004]. Given the demonstrated capability of PDO, MEI, and AMO in the predic-
tion of precipitation over North America, this study assesses the potential for these three indices to
improve seasonal precipitation forecasts over southwest U.S. The monthly records of teleconnection
indices are obtained from the Earth System Research Laboratory at the National Oceanic and Atmos-
pheric Administration (NOAA). More information on PDO, MEI, and AMO and their impacts on the south-
western U.S. is provided in Appendix A.

Figure 2. Flowchart of the proposed hybrid statistical-dynamical precipitation forecasting algorithm. See the text for details.
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The proposed hybrid approach benefits from the predictability of an analog-year model based on telecon-
nection indices [Hidalgo and Dracup, 2003; Kurtzman and Scanlon, 2007]. We propose a Bayesian model
based on copula functions [Joe, 1997; Nelsen, 1999] to represent the joint distribution of teleconnection indi-
ces and seasonal precipitation. Unlike multivariate distribution functions, such as the bivariate Gaussian or
Gamma distributions [Kelly and Krzysztofowicz, 1997; Sharma, 2000; Yue et al., 2001], copulas do not require
all of the marginal distributions to come from the same distribution.

Copula functions are defined as multivariate distribution functions, P x1; . . . ; xnð Þ, with uniformly distrib-
uted variables on the interval 0; 1½ �:

P x1; . . . ; xi; . . . ; xnð Þ5C P x1ð Þ; . . . ; P xið Þ; . . . ; P xnð Þ½ �5C u1; . . . ; ui ; . . . ; unð Þ (1)

where, C is the Cumulative Distribution Function (CDF) of the copula, and P xið Þ is the marginal distribution
of xi being uniform on the interval 0; 1½ �, which is also denoted by ui . Note that C connects the CDFs of the
random variables (i.e., ui), whereas P . . .ð Þ in the left-hand side represents the joint probabilities of the origi-
nal random variables (i.e., xi).

The Elliptical and Archimedean copulas [Nelsen, 1999] are the two families that are most frequently used in
hydrologic applications [e.g., Favre et al., 2004; Dupuis, 2007; Hao and AghaKouchak, 2013; Madadgar and
Moradkhani, 2015]. Archimedean copulas have limitations in preserving high-dimensional pair-wise
dependence [Joe, 1997]. Elliptical copulas, on the other hand, are more flexible for describing associations
among more than two variables. For this reason, we use Gaussian copula from the elliptical family for the
analog-year model as explained below.

We use the conditional probability distribution function based on copulas [Madadgar and Moradkhani,
2013] to estimate the predictive distribution of precipitation given the joint status of the teleconnection
indices:

p x1j x2 . . . ; xnð Þ5 c u1; . . . ; unð Þ
Qn

i51 p xið Þ
c u2; . . . ; unð Þ

Qn
i52 p xið Þ

(2)

where, p x1j x2 . . . ; xnð Þ is the conditional distribution of the random variable x1 given the set
x2 . . . ; xnð Þ of random variables; c u1; . . . ; unð Þ is the Probability Density Function (PDF) of the continuous

copula function; and p xið Þ is the PDF of ith random variable. The conditional probability of x1 given x2 (i.e.,
bivariate case) is expressed as follows:

p x1jx2ð Þ5 c u1; u2ð Þ:p x1ð Þ (3)

In a trivariate case, the conditional probability of x1 given x2; x3 is defined as

p x1jx2; x3ð Þ5 c u1; u2; u3ð Þ:p x1ð Þ
c u2; u3ð Þ (4)

We used equation (4) to estimate the conditional probability of precipitation at each grid cell in the study
area (denoted by x1) given multiple teleconnection indices (denoted by x2 and x3) that have been observed
in the preceding months/seasons. We have used multiple variables, including PDO, MEI, and AMO, and
linked them to precipitation using Gaussian copula as mentioned above. The copula parameters have been
estimated using the method of Inference Function for Margins (IFM) [Joe, 1997]. The predictive distribution
of equation (4) is then obtained once using AMO (i.e., x2) and MEI (i.e., x3) and once using AMO (i.e., x2) and
PDO (i.e., x3). Then, the fiftieth percentiles (median) of the resulting probability distributions are used as the
final forecasts; that is, two forecasts each obtained from a separate probability distribution.

3.3. Expert Advice (EA) Algorithm
In the hybrid model, the Expert Advice (EA) algorithm [Cheng and AghaKouchak, 2015] is used to combine
the dynamical and analog-year statistical components (Figure 2). In this application, the final ensemble in
the hybrid model consists of the two statistical analog-year model predictions, the grand ensemble mean
of the NMME forecasts, and the ensemble mean of each participating model in the NMME, that is, eight
ensemble members from eight models—making a total of eleven inputs to the EA algorithm. The EA algo-
rithm assigns different weights to the ensemble members based on their performance during a training
period, and returns their weighted average as the best ensemble response.
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Previous studies show that averaging
the ensemble of multimodel predic-
tions with equal weights does not nec-
essarily lead to the most skillful
outcome [Masson and Knutti, 2011;
Knutti et al., 2010]. In fact, the ensem-
ble mean may be biased by poorly
performing models [Krishnamurti et al.,
2000] and smooth out the extreme
events predictions (Figure 2a). The EA
algorithm argues that instead of the
ensemble mean, an ensemble response
should be selected that is better than
each individual ensemble member,
plus an error term. The EA algorithm
starts with equal weights (w1

0 ;w2
0 ; . . . ;

wN
0 5 1

N) for all the N ensemble mem-
bers (including both statistical and
dynamical simulations) at the first time
step t51ð Þ of the training period (see
Figure 3). In this particular application
of the method, there are 11 weights

i:e:; N511ð Þ for 11 forecast compo-
nents at each time step ( cn;t) (i.e., the 8
dynamical model ensemble means, the
NMME grand ensemble mean, and the
two statistical predictions). The weight
of each member is then updated at
each time step based on its relative per-
formance to the others during the past
time steps. A loss (error) function,
k x; cð Þ, is used to adjust the weights of
ensemble members based on the
observed variable (i.e., x) and the simu-
lated variable (i.e., c). The loss function
is obtained by optimizing the weight
function /t xð Þ as explained in Vovk
[2001]. Ultimately, the goal of the algo-

rithm is to find the best ensemble response (Figure 3b) with the smallest cumulative error over the training
period. More details on EA algorithm is found in Cheng and AghaKouchak [2015]. Given the relatively short
length of record (1982–2014), we use hindcasts from 1982 up to the last year before the target year (after 2005)
for estimating the weights (i.e., training purposes). The model is then validated for the target year based on
ground-based observations.

4. Results and Discussion

In this section, we show the results of the proposed hybrid precipitation prediction approach at the spatial
resolution of 18 3 18 over the southwest U.S. Precipitation forecasts are presented for different periods dur-
ing the rainy season of the region; i.e., NDJ, NDJF, NDJFM, DJF, DJFM, and JFM. The results of the statistical
precipitation model are also generated for the same forecast periods. This step involves the conditional
forecast of precipitation anomaly given the global teleconnection indices, including PDO, MEI, and AMO.
The statistical model describes the joint relationship between AMO-MEI (and AMO-PDO) and winter precipi-
tation using copulas (see also equation (4)). These climate indices are averaged over June–October where
they show relatively high correlation with the following rainy season precipitation in several regions of the

Figure 3. The (a) flowchart and (b) schematic view of the Expert Advice (EA)
algorithm.
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world [Schepen et al., 2012; Khedun et al., 2014; Kurtzman and Scanlon, 2007] including the western U.S. [Red-
mond and Koch, 1991]. It should be noted that there are some sources of uncertainty in reported climate
indices such as PDO [Wen et al., 2014] which can influence the relationships between the predictors and
precipitation to some extend and consequently affect the statistical model simulations. As explained earlier,
the conditional PDF of precipitation was separately estimated for each pair of teleconnection indices (see
equation (4)), and the fiftieth percentile (median) is used as the final prediction of associated PDF. The
choice of fiftieth percentile from the predictive distribution is another source of uncertainty in statistical
model simulations which needs to be studied in future efforts.

The EA algorithm is applied to both statistical model simulations and dynamical model simulations. To eval-
uate the proposed hybrid framework, we assessed the predictability of the hybrid model and the dynamical
model in capturing the negative precipitation anomalies (below-average precipitation) during two major
droughts in the past decade; 2006–2008 and 2012–2014. Note that precipitation anomalies for each fore-
cast period at each grid cell are calculated based on the average precipitation over 1982–2014 in that par-
ticular grid cell. Figure 4 shows the size of observed area under drought conditions (i.e., negative
precipitation anomaly) (light gray bars) and the size of area correctly captured as dry region using the grand
ensemble mean of the NMME (dark gray bars), the statistical simulations’ mean (yellow bars), and the hybrid
framework (blue bars). Note that the size of area is calculated based on the total number of grid cells with
observed/simulated negative precipitation anomaly multiplied by the size of each grid cell. As shown, the
hybrid model and the statistical model could capture these two drought events better than NMME, espe-
cially for the rainy season of 2006–2007 and 2014–2015. The drought predictability for 2014–2015 varies
from 28% (NDJ) to 82% (DJFM) for the hybrid model, and 19% (NDJ) to 62% (DJF) for the NMME model.

Figure 4. The area (mi2) with the observed negative precipitation anomaly (light gray bars) correctly captured by the NMME (dark gray bars), statistical model (yellow bars), and hybrid
model (blue bars) simulations during 2006–2008 and 2012–2014 droughts. The target prediction periods start at November, December, or January and continues up to the following
March.
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Overall, for the extreme drought of 2014–2015, the predictability of hybrid model was 10% (NDJ and NDJF)
to 50% (DJFM) greater than that of NMME. Similarly, for 2006–2007 drought, the predictability increases by
10% (NDJ) to 60% (NDJF, DJF, and DJFM) after the hybrid-model application. Note that in some other years
all the three models could successfully capture drought conditions across the region and their drought pre-
dictabilities were rather similar (Figure 4).

Figures 5 and 7 display the spatial distribution of the observed precipitation anomaly (first column), ensemble
mean of NMME forecasts (second column), the statistical simulations’ mean (third column), and the hybrid
simulation (fourth column) during the rainy season of 2006–2007 (Figure 5) and 2014–2015 (Figure 6). The pix-
els with a positive precipitation anomaly are shown in blue, and those with a negative anomaly are shown in
brown. For each target year (e.g., 2006–2007 and 2014–2015), we used the data from 1982 up to the last year
before target year to calibrate the hybrid-model parameters, including the weights of the EA algorithm and
the copula parameters. This procedure was repeated for each target year at each grid cell (18 3 18).

As shown in the observations (Figures 4–6), the southwestern U.S. has experienced extreme droughts in
2006–2008 and 2012–2014 periods, specifically in the latter. As shown for 2006–2007 period, the NMME
signal was opposite of that of the observations in all the lead times (i.e., NMME indicated wet conditions,
but the region experienced a major drought). However, both the statistical model and the hybrid model
could capture the 2006–2007 drought much better than NMME. Despite the performance of statistical
model, its contribution in the final hybrid model depends on its performance during the entire training
period. Likewise, the contribution of the hybrid model depends on its performance during the training
period. According to the final weights of statistical and dynamical models (Figure 7), both statistical and
dynamical models contribute in the final result of the hybrid model. Although some discrepancies
between the hybrid model and the observations are apparent in central California, the overall perform-
ance of the hybrid model is better than using solely dynamical or statistical model simulations in captur-
ing the drought of 2006–2007 across the region. In 2014–2015, the NMME could capture the negative
anomalies in most parts of California (especially in NDJF and DJF); however, it gives opposite signal for
almost entire Nevada. The statistical model, on the other hand, could predict the negative anomalies of
the southern part of the region and fails to capture the drought conditions in the northern part. The com-
bination of the two models (i.e., the hybrid model), however, could improve the predictions of the NMME
and statistical model for most parts of the region. In addition, the results of Figures 5 and 6 indicate that
the hybrid model performs better for relatively long lead times (compare the results of NDJ with other
forecast periods).

This study also analyzes the performance of the three models for the wet winter of 2010–2011 (i.e., 2010–
2011). Figure 7 compares the predictions of the NMME, statistical model, and the proposed hybrid
statistical-dynamical model for the rainy season of 2010–2011. Similar to the previous results, the forecast
lead time increases from 3 to 5 months. As shown, the statistical model could not predict the positive
anomalies in the region. The grand ensemble mean of NMME forecasts also failed to represent the positive
precipitation anomalies (i.e., wet conditions) especially in central and south California. However, the hybrid
model slightly improved the predictions for central California and Nevada (Figure 6a). The predictability of
wet conditions in 2010–2011 varies from 45% (NDJFM) to 85% (JFM) for the hybrid model and from 35%
(NDJ) to 60% (JFM) for the NMME. Overall, the hybrid model improves the predictability (Figure 6b) by 5%
(DJFM) to 25% (JFM) relative to the NMME. Comparing the results in Figures 4–6 indicates that all the three
models have higher predictability in the selected dry years than in the selected wet year. It should be noted
that the wet conditions in 2010–2011 was significantly attributed to a sequence of Atmospheric River (AR)
storms [Zhu and Newell, 1998]. AR storms are generated by water-vapor streams in the atmosphere and usu-
ally supply approximately 20–50% of the annual precipitation and streamflow in California [Dettinger,
2013]. In December 2010, ARs occurred within a week’s time and provided half of the average annual pre-
cipitation for central and southern California. Although some connections are found between ARs and
atmosphere-ocean dynamics such as Madden-Julian Oscillation (MJO) [Guan et al., 2012; Ralph et al., 2011],
North Atlantic Oscillation (NAO) [Lavers and Villarini, 2013], Arctic Oscillation (AO), and Pacific North Ameri-
can Index (PNA) [Guan et al., 2013], these associations are not yet clearly understood [Gimeno et al., 2014],
and operate at subseasonal rather than seasonal time scales. Predicting ARs is very challenging, and both
dynamical and statistical models have limitations in representing them. This is one of the limitations of the
proposed hybrid statistical-dynamical framework and can be improved if the dynamical and statistical
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models provide more accurate simulations of the ARs, or if other teleconnection indices are discovered that
more strongly reflect a tendency for ARs within a given season.

Insight into the contributions of the different components of the hybrid framework can be gained from
assessing the weights obtained for the statistical and dynamical forecasts, for different seasonal predic-
tands. Figure 8 displays the spatial distribution of weights obtained from the EA algorithm for the grand
ensemble mean of the NMME and the statistical model simulations. As seen, the ensemble mean of the
NMME attained generally larger weights in northern California relative to the statistical model simulations.
In contrast, the statistical model simulations obtained larger weights in southern California and central to

Figure 5. Precipitation anomaly (mm/d) during the rainy season of 2006–2007 with different lead times (NDJ, NDJF, NDJFM, DJF, DJFM,
and JFM). Forecasts are initiated from October of each year, i.e., IC 5 Oct. The (first column) observations, (second column) NMME fore-
casts, (third column) statistical model predictions, and (fourth column) hybrid model predictions are shown for the target periods of
each year.
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southern Nevada. Neither model, however, receives large weights in central California and northern Nevada,
which means that the rest of ensemble members (corresponding to the ensemble mean of each of the
eight NMME models) in the hybrid model ensemble are given large weights for those regions.

5. Concluding Remarks

In recent decades, drought monitoring has improved significantly due to a range of satellite observa-
tions and hydroclimate reanalysis data sets [Xia et al., 2012]. However, drought prediction at seasonal to

Figure 6. Precipitation anomaly (mm/d) during the rainy season of 2014–2015 with different lead times (NDJ, NDJF, NDJFM, DJF, DJFM, and
JFM). Forecasts are initiated from October of each year, i.e., IC 5 October. The (first column) observations, (second column) NMME forecasts,
(third column) statistical model predictions, and (fourth column) hybrid model predictions are shown for the target periods of each year.
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inter-annual scales remains a grand challenge at a regional scale, as evidenced by forecasts during the
recent drought in the western U.S. [Seager et al., 2014]. A breakthrough in predicting precipitation can
lead to major improvements in water management and risk reduction. This study presents a hybrid sea-
sonal climate forecasting approach that combines physically based dynamical models and statistical

Figure 7. Comparing the performance of hybrid model and the dynamical and statistical models in (a) capturing the wet conditions and (b) predictability of positive anomalies during
the rainy season of 2010–2011.

Figure 8. Weight distribution obtained from the EA algorithm for (left) the NMME simulations and (right) the statistical model simulations for different prediction periods (i.e., NDJ, NDJF,
NDJFM, DJF, DJFM, and JFM).
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models, and investigates its potential for improving drought prediction in the southwestern U.S. The
proposed hybrid model combines dynamical model forecasts from the NMME with Bayesian statistical
forecasts using teleconnections indices (PDO, MEI, and AMO). The hybrid model utilizes the EA algorithm
to merge the dynamical model forecasts and statistical model predictions. The hybrid method aims to
improve drought prediction by combining these two fundamentally different seasonal precipitation pre-
diction methods.

The results indicate that although the dynamical model simulations capture some of the recent droughts,
they do not offer high predictability, corroborating prior assessments of dynamical model precipitation
prediction skill. The integration of the statistical and dynamical methods, however, appears to improve the
prediction of seasonal precipitation in this case study. The predictability of seasonal precipitation increases
by 5–60% after the application of hybrid model. Overall, the hybrid framework performs better in predict-
ing below-normal precipitation than above-normal precipitation (Figures 4–7). While there are still major
challenges for reliable seasonal drought predictions, the results of this study encourage further exploration
of hybrid dynamical-statistical methods in different regions with different climate regimes. We acknowl-
edge that several issues such as the relatively short record, uncertainty in the observed dependencies, and
model parameterization may have affected predictions of wet and drought anomalies. More efforts and
evaluations of the proposed model are required before this model can be used in water resources
management.

Drought prediction studies often focus on national or continental-scale predictions with less attention to
their adequacy for regional conditions and impacts. The manifestation of drought impacts at very local to
regional scales, however, motivates interest in evaluating drought-related prediction approaches at local
to regional scales. At regional scales, different sources of predictability may be harnessed through differ-
ent forecasting methods. For instance, the strength of climate indices (e.g., ENSO) influence on local cli-
mate varies in different regions and seasons, and dynamical climate forecasting model performance
varies similarly. Here the hybrid model is applied for the southwestern U.S. by including climatic indica-
tors that have been shown to affect precipitation in this region. This modeling framework can potentially
be applied to other regions by integrating the relevant region-specific climatic indicators, as well as the
NMME predictions that have a global extent.

Appendix A

Pacific Decadal Oscillation (PDO). The Pacific Decadal Oscillation (PDO) indicates the long-term variability in
monthly SST anomalies over the North Pacific Ocean [Mantua et al., 1997]. Precipitation pattern in the west-
ern U.S. is rather correlated with the PDO phase; where in the southwest U.S., drought frequency tends to
increase in the cool (negative) phase of PDO [McCabe et al., 2004]. It has been also evidenced that PDO aug-
ments the impacts of ENSO [McCabe and Dettinger, 1999] and AMO [McCabe et al., 2004] on the climate vari-
ability of the western U.S.

Multivariate ENSO Index (MEI). The El Nino-Southern Oscillation (ENSO) is an important coupled ocean-
atmosphere phenomenon with a strong impact on interannual climate variability. The Multivariate
ENSO Index (MEI) [Wolter and Timlin, 1998] is a comprehensive index consisting of multiple meteoro-
logical components for monitoring ENSO events. It combines six main observed variables over the
tropical Pacific: the sea level pressure, zonal and meridional components of the surface wind, sea sur-
face temperature, surface air temperature, and the total cloudiness fraction of the sky. The MEI is
defined as the first unrotated principal component (PC) [Jolliffe, 2002] of the above mentioned six var-
iables, which are collected from the International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) at NOAA.

Atlantic Multidecadal Oscillation (AMO). The Atlantic Multidecadal Oscillation (AMO) influences the air tem-
perature and precipitation over the Northern Hemisphere, particularly North America and Europe. It reflects
the long-term changes in the sea surface temperature of the North Atlantic Ocean, whereas the cool and
warm phases may last for 20–40 years. Drought frequency over North America is associated with AMO
phases [McCabe et al., 2004]. The positive phase of the AMO often leads to droughts in the southwest and
midwest U.S. and results in above-average precipitation in the Pacific Northwest and Florida. The impact is
opposite during the negative phase of the AMO.
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