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Abstract Nuisance flooding corresponds to minor and frequent flood events that have significant socioeco-
nomic and public health impacts on coastal communities. Yearly averaged local mean sea level can be used as
proxy to statistically predict the impacts of sea level rise (SLR) on the frequency of nuisance floods (NFs). In this
study, we use generalized linear models (GLM) and Gaussian Process (GP) models combined to (i) estimate the
frequency of NF associated with the change in mean sea level, and (ii) quantify the associated uncertainties via a
novel and statistically robust approach. We calibrate our models to the water level data from 18 tide gauges
along the coasts of United States, and after validation, we estimate the frequency of NF associated with the
SLR projections in year 2030 (under RCPs 2.6 and 8.5), along with their 90% bands, at each gauge. The historical
NF-SLR data are very noisy, and show large changes in variability (heteroscedasticity) with SLR. Prior models in
the literature do not properly account for the observed heteroscedasticity, and thus their projected uncertainties
are highly suspect. Among the models used in this study, the Negative Binomial Distribution GLM with GP best
characterizes the uncertainties associated with NF estimates; on validation data �93% of the points fall within
the 90% credible limit, showing our approach to be a robust model for uncertainty quantification.

1. Introduction

There is strong evidence for global sea level rise (SLR) over past decades both from in situ tide gauge meas-
urements and satellite altimetry [Church et al., 2013; Church and White, 2011; Church et al., 2011; Church and
White, 2006; Stocker, 2014; Domingues et al., 2008; Calafat and Chambers, 2013; Watson et al., 2015; Cazenave
et al., 2014]. The average rate of SLR has increased from 1.2 6 0.2 mm/yr in 1901–1990 to 3.0 6 0.7 mm/yr in
1993–2010 [Hay et al., 2015]. The rate over the past decades is an order of magnitude larger than the last
millennia and there is a globally averaged acceleration of 0.022 6 0.015 mm/yr2 (between 1952 and 2011)
[Calafat and Chambers, 2013]. Based on current trajectories of anthropogenic activities and greenhouse gas
emissions [Lyu et al., 2014], projections of SLR over the 21st century cannot rule out an increase greater
than 1 m [Milne et al., 2009; Rahmstorf, 2007; Nicholls and Cazenave, 2010; Kopp et al., 2014]. However, there
is considerable debate around the significance of the suggested rate of acceleration. Accordingly, it has
been suggested that for a reliable detection of SLR acceleration rate, one needs to apply differently charac-
terized methods and to remove interannual to multidecadal variability from the observed signal [Haigh
et al., 2014; Visser et al., 2015].

This rise in sea level reduces the freeboard between high tidal datum and flood stage, leading to an
increase in the risk that extreme water levels overtop flood defenses. By 2100, it is expected that 0.2–4.6%
of the global population will be flooded annually [Hinkel et al., 2014] and the global cost of flooding could
reach US$210 billion per year, if no adaptation measures are implemented [Hinkel et al., 2013]. Eight out of
the top twenty most vulnerable cities of the world are in the United States [Hallegatte et al., 2013], and over
half of the population of the United States resides in coastal regions [Scavia et al., 2002]. Without further
flood management measures, New York City alone is projected to experience a US$174 million per year loss
due to flooding [Aerts et al., 2014].

Nuisance flooding is a relatively new term that describes nondestructive flooding. Nonetheless, it is capable
of causing substantial negative socioeconomic impacts [Gornitz et al., 2001], compromising infrastructure
such as surface transportation [Suarez et al., 2005] and sewer systems [Cherqui et al., 2015; Flood and
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Cahoon, 2011], and posing public health risks [Ten Veldhuis et al., 2010]. Previous studies on socioeconomic
impacts of future coastal flooding have primarily focused on extreme flood heights and therefore the least
frequent flood events [Muis et al., 2016; Reed et al., 2015; Woodruff et al., 2013]. Sweet and Park [2014] esti-
mated the projections of annual exceedance above local nuisance levels at U.S. tide gauges by shifting
probability estimates of daily maximum water levels over a contemporary 5 year period following probabil-
istic relative SLR projections of Kopp et al. [2014] for representative concentration pathways (RCP) 2.6, 4.5,
and 8.5. Sweet and Park [2014] concluded that the majority of locations are expected to experience even
more NF as ‘‘tipping points’’ for inundation will be surpassed by 2050 under the local median SLR projec-
tions. Moftakhari et al. [2015] described the relationship between the observed local annually averaged
mean sea level and NF through nonlinear regression analysis since 1920 in 12 tide gauges located along the
coasts of United States. They use Monte-Carlo analysis to project the 90% confidence interval of NF following
near-(2030) and mid-term (2050) future projections of SLR, under RCPs 2.6 and 8.5 [Kopp et al., 2014].

Moftakhari et al. [2015] assumed that the relationship between mean sea level (MSL) and nuisance flooding
(NF) follows a nonlinear trend of the form:

NF5a1b � ðMSLÞh; (1)

where the parameters ða;b; hÞ are estimated by nonlinear least squares.

It is well known that nonlinear least squares can provide inefficient estimates for count-valued data, espe-
cially for low-valued counts [Cameron and Trivedi, 2013]. Since nuisance flooding is a more recent phenome-
non, a significant fraction of the historical NF data consists of low-valued counts.

Furthermore, reported standard errors under nonlinear least squares are inconsistent without post hoc cor-
rection [White, 1981]. This can be seen through the residuals

�̂ i : 5NFi2â2b̂ � ðMSLiÞĥ ; (2)

where â; b̂; ĥ are the estimated parameters in (1). Under standard regression assumptions, the distribution
of �̂1; . . . �̂N should be independent, mean zero, and with constant variance (homoscedasticity). However,
the observed residuals in the fitted MSL-NF relationship appear to have variances that strongly depend on
the MSL predictor (see section 2.2.4); over the last few decades, both the amount of sea level rise and the
year-to-year variability or dispersion of nuisance flooding about its trend has increased substantially, which
can be partially attributed to the multidecadal variations in extreme sea levels relative to changes in mean
sea level [Wahl and Chambers, 2015]. Thus, even if we assume validity of the specific nonlinear relationship
(1), this presence of significant heteroscedasticity can result in inaccurate projections for future NF.

Hereby we propose a more robust approach that overcomes the shortcomings of previous studies. We will
use the framework of generalized linear models (GLMs) [McCullagh and Nelder, 1989] to provide a principled
statistical approach for both count data and heteroscedasticity. Straightforward implementations of the
GLM framework, however, do not effectively model the apparent heteroscedasticity in the NF data. Our
main contribution in this paper is an extension of GLMs, where we model the dispersion of the NF counts
nonparametrically using Gaussian processes (GPs). Similar approaches have been proposed for nonpara-
metric regression models [Goldberg et al., 1997; Wang and Neal, 2012], but have not been proposed in the
context of GLMs. We will show that it provides an effective model for the observed variability in nuisance
flooding, and gives better projections on held out (validation) data. Importantly, such models are now easily
implemented using standard Bayesian software (the Stan package [Carpenter et al., 2015]), broadening their
appeal beyond a few statisticians and machine learning researchers, and could be an effective model for
noisy environmental data in general.

2. Methods and Materials

2.1. Tide Gauge Data and SLR Projections
We use three sets of data here to calibrate our model and project NF in the future. Hourly WL data for tide
gauges used in this study (Table 1 and Figure 1) are provided by National Oceanic and Atmospheric Associ-
ation (NOAA). The yearly averaged WL (available on http://www.psmsl.org/[Holgate et al., 2012]) is then sub-
tracted by the long-term mean (e.g., over the whole record) to produce the time series of mean sea level

Journal of Geophysical Research: Oceans 10.1002/2016JC012084

VANDENBERG-RODES ET AL. PROJECTING NUISANCE FLOODING 8009

http://www.psmsl.org


anomaly (DMSL) relative to land, that reflects a combination of WL changes and vertical land motions
[W€oppelmann and Marcos, 2015; Nicholls et al., 2014]. The cumulative hours that observed WL exceeds a cer-
tain threshold, in each meteorological year (MY; May–April), represents the NF at any given tide gauge. This
NF threshold (listed in Sweet and Park [2014]), determined by local Weather Forecasting Offices of NOAA’s
National Weather Service, has been historically associated with minor flooding impacts. It is worth mention-
ing that not necessarily every WL exceedance above this threshold results in noticeable coastal flooding
[Sweet and Park, 2014]. Sweet and Park [2014] provided NF records prior-MY 2012 (May 2012 to April 2013)
and Moftakhari et al. [2015] extended the records to MY 2013. The probability distribution of local SLR pro-
jections under CMIP5 (RCP 2.6 and RCP 8.5 scenarios) are provided by Kopp et al. [2014]. We use quantiles
0.05 and 0.95 as representatives of 90% confidence limits of projected SLR for year 2030.

Figure 1. Station locations.

Table 1. Tide Data Description

NOAA ID Latitude Longitude Start Year Completeness (%)

Boston, MA (BMA) 8443970 42.353 271.053 1921 99
The Battery, NY (BNY) 8518750 40.700 274.013 1920 99
Sandy Hook, NJ (SNJ) 8531680 40.467 274.008 1932 98
Atlantic City, NJ (ANJ) 8534720 39.355 274.418 1920 92
Philadelphia, PA (PPA) 8545240 39.933 275.142 1920 97
Baltimore, MD (BMD) 8574680 39.267 276.578 1920 99
Annapolis, MD (AMD) 8575512 38.983 276.480 1928 95
Washington, DC (WDC) 8594900 38.873 277.022 1931 98
Sewells Point, VA (SVA) 8638610 36.947 276.330 1927 99
Wilmington, NC (WNC) 8658120 34.227 277.953 1935 98
Charleston, SC (CSC) 8665530 32.782 279.925 1921 99
Fort Pulaski, GA (FGA) 8670870 32.033 280.902 1935 99
Key West, FL (KFL) 8724580 24.555 281.807 1920 99
Port Isabel, TX (PTX) 8779770 26.060 297.215 1944 96
La Jolla, CA (LCA) 9410230 32.867 2117.257 1924 93
San Francisco, CA (SCA) 9414290 37.807 2122.465 1920 99
Seattle, WA (SWA) 9447130 47.602 2122.338 1920 99
Honolulu, HI (HHI) 1612340 21.307 2157.867 1920 99
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2.2. Methodology
2.2.1. Statistical Preliminaries
We let D denote our data set of N yearly observations of the MSL and NF variables:

D5fðNF1;MSL1Þ; . . . ; ðNFN;MSLNÞg: (3)

Within the statistical paradigm, these data are modeled a priori by a probability density function pð�Þ, which
typically depends on additional parameters. In this study, we model each NF observation as depending
only on the observed MSL variable for the same year, that is, we assume the conditional independence

pðNF1; . . . ;NFN jMSL1; . . . ;MSLNÞ

5pðNF1 jMSL1Þ � � � pðNFN jMSLNÞ;
(4)

where pðNFj jMSLjÞ is the conditional probability density of the NF variable given the mean sea level MSLj,
evaluated at NFj.

Note that the particular probability density pð�Þ is inferred from its argument. The reader is here forewarned
that this can be confusing in the context of Bayesian inference (section 2.2.3), where parameters are also
random variables. The notation makes no distinction between a possible value of random variable and the
random variable itself. That is, pðaÞ denotes the probability density function of the parameter a, evaluated
at a particular value a, with the particular density function pð�Þ (e.g., normal and Poisson) usually specified
in the text.

We will use the standard notations E½X�; Var½X�, and Cov½X; Y� to refer to the mean, variance, and covariance
of random variables X and Y.
2.2.2. Generalized Linear Models
In the generalized linear model framework, we specify the observation variable NF to have an exponential
family distribution. In the context of NF, the observations are count data—the number of hours that the
observed water level lies above a certain threshold—so we will focus on the Poisson and Negative Binomial
Distributions, which are supported on the nonnegative integers. We then specify the estimated mean l as a
log-linear function of the MSL variable:

log l5a1b �MSL; (5)

where a and b are unknown parameters. The nonlinear regression approach minimizes the sum of squared
errors

PN
i51 ðNFi2liÞ2, where li5exp ða1b �MSLiÞ. To account for the nature of the observations (e.g., Pois-

son), a common frequentist estimate of the parameters a and b is obtained by maximizing the log likelihood
of the data, which by (4) is

log pðNF1; . . . ;NFN j a; b;MSL1; . . . ;MSLNÞ

5
XN

i51

log pðNFi j a; b;MSLiÞ:
(6)

If pðNFj j a; b;MSLjÞ are assumed to be Gaussian with constant variance, maximizing (6) is identical to mini-
mizing the sum of squared errors in nonlinear regression.

As discussed in the section 1, a constant variance assumption (homoscedasticity) is not tenable. Now the
Poisson distribution has the variance equal to the mean, but this is perhaps still not representative of the
data. In fact, the residuals are often in the order of the mean, instead of the square-root of the mean (Figure
2). To better model such overdispersed NF data, we specify the observation variable NF to be a Negative
Binomial random variable, parameterized by its mean l and overdispersion 1=/, such that

Var NF5l1
l2

/
: (7)

In particular, the log likelihood of the data would be
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XN

i51

log pðNFi j a; b;/;MSLiÞ

5log
YN

i51

Cð/1NFiÞ
ðNFiÞ! Cð/Þ

/
/1li

� �/ li

/1li

� �NFi

:

(8)

Given the observed data, we could maximize the log likelihood function based on (8) to estimate the
parameters a, b, and /.

We remark that the Poisson distribution can be obtained as a limit of the Negative Binomial as /!1.

Figure 2. Predicted nuisance flooding given mean sea level for data observed in Annapolis, MD (AMD). Circles: training data (years 1929–2000), blue triangles: validation data (years
2001–2013). Line: predicted NF medians, shading: 90% confidence interval (nls) and credible intervals (Poisson, NegBin, NegBinGP models).
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2.2.3. Bayesian Inference
Alternatively, we can take the Bayesian modeling approach [Gelman et al., 2014], which has at least two
advantages in this situation. First, this will allow us to more flexibly model the dispersion parameter / of
the above Negative Binomial model using Gaussian Processes, as we will do in the next section. Second, the
Bayesian approach easily allows us to jointly account for the uncertainty of model parameters and projec-
tions of future MSL.

With a Bayesian approach, we explicitly model the parameters a, b, and / as random variables a priori, and
then use Bayes’ rule to obtain the posterior distribution of the parameters conditional on the observed data
D: (recall (3))

pða; b;/ j DÞ /
YN

i51

pðNFi j a; b;/;MSLiÞ½ � � pða; b;/Þ: (9)

For the choice of prior distribution pða; b;/Þ, we will assume independence among the parameters, thus
pða;b;/Þ5pðaÞpðbÞpð/Þ. Note that given the observed data, the parameters are dependent a posteriori.
Here we place a lognormal prior on the dispersion parameter /, and normal ð0; 1002Þ priors on the a and b
parameters.

Given a future mean sea level projection MSLN11, the Bayesian framework integrates over the posterior
parameter distribution to obtain the posterior distribution of future nuisance flooding:

pðNFN11jD;MSLN11Þ5Z
pðNFN11j a; b;/;MSLN11Þpða; b;/ j DÞ da db d/:

(10)

For a distribution pðMSLN11Þ instead of just a point estimate, the Bayesian framework easily handles this by
integrating over this uncertainty as:

pðNFN11jDÞ5
Z

pðNFN11j a; b;/;MSLN11Þ

�pða; b;/ j DÞpðMSLN11Þ da db d/ dMSLN11:

(11)

Typically, the above integrals do not have a closed form representation, so we will approximate them using
Markov Chain Monte-Carlo simulation.
2.2.4. Gaussian Process Modeling of Heteroscedasticity
Recall that the Negative Binomial model assumes the specific mean-variance relationship (7), with the
parameter / controlling the amount of overdispersion compared to the Poisson. However, the apparent
mean-variance relationship of most stations is not implied by either the Poisson or the Negative Binomial
law. Figure 2 shows the predicted mean and dispersion for the Annapolis, MD, training data, under the non-
linear regression model, the Poisson and Negative Binomial models. Note that the Poisson model provides
extremely overconfident projections, while the Negative Binomial model (and nonlinear least squares) is
too conservative with larger MSL. The last plot shows our proposed GP heteroscedasticity model—des-
cribed below—which appears to give a good account of the observed dispersion.

In order to more flexibly model the heteroscedasticity present in the NF data, we propose to replace the dis-
persion parameter / in the Negative Binomial model with a smoothly varying function /ð�Þ of the MSL
input. We eschew parametric models for /ð�Þ, instead choosing a classic Bayesian nonparametric model:
the (log-)Gaussian Process (GP) [Rasmussen and Williams, 2006; Gelman et al., 2014]. We recall that a GP is a
distribution on functions f ð�Þ, and, as with multivariate Gaussians, a GP is uniquely defined by its mean and
covariance. The covariance of a GP is a function Kð�; �Þ of two variables, with Kðx; x0Þ5Cov½f ðxÞ; f ðx0Þ�. Fur-
thermore, the specification is consistent, in the sense that the distribution of any finite set of values f ðx1Þ;
. . . ; f ðxnÞ is multivariate Gaussian with covariance matrix fKðxj; xkÞgn

j;k51.

In this work, we specified log /ð�Þ to be a GP, with

/ðxÞ5exp a1bx1s
Z x

0
BðzÞ dz

� �
: (12)
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Here Bð�Þ is Brownian motion, x is the MSL input, and a, b, and s are parameters. The stochastic process
defining log /ð�Þ in (12) is often called (one-fold) integrated Brownian motion (IBM) [Wood and Kohn, 1998;
Wahba, 1990], which is a Gaussian process with a linearly varying mean

E½log /ðxÞ�5a1bx; (13)

and covariance structure (kernel):

Ksðx; x0Þ : 5Cov½log /ðxÞ; log /ðx0Þ�

5
s2

2
jx2x0jmin ðx; x0Þ21

s2

3
min ðx; x0Þ3:

(14)

IBM has the following advantages compared with other commonly used kernels such as the squared expo-
nential kernel:

1. With an (improper) flat prior on a and b, pða; bÞ / 1, The IBM prior can be interpreted as the Bayesian
analog of the cubic smoothing spline [Kimeldorf and Wahba, 1970].

2. The squared exponential and many other kernels make the strong assumption of stationarity, which can
unduly constrain the posterior of /ðxÞ in regions with sparse data, especially when extrapolating past
the available data. The IBM prior is nonstationary, and accounts for increasing uncertainty under extrapo-
lation. This is particularly important in the context of modeling the NF-MSL relationship, as the evolution
of tidal components [Jay, 2009; Ray, 2006, 2009; Flick et al., 2003; M€uller et al., 2011] also contributes addi-
tional uncertainty which is influenced in part by sea level rise [Devlin et al., 2014]. Additional variability
due to changes in the frequency of storm surges over time [Marcos et al., 2015; Thompson et al., 2013] is
also absorbed into this IBM component. Of course, the IBM model assumes that such changes have
already impacted the historical data and vary smoothly in response to MSL rise.

We placed a broad lognormal prior on the scale parameter s, along with the flat priors on a and b.

3. Results

We used the data described in section 2.1 to compare the performance of the following four models: non-
linear least squares (nls), Poisson GLM (Poisson), Negative Binomial GLM with (NegBinGP), and Negative
Binomial GLM without (NegBin) the GP heteroscedasticity model. We recall that the nls model assumes (1)
for the mean, while the latter three models assume equation (8).

3.1. Predictive Performance
For each station, we used the data from all years t � 2000 as our training (calibration) set, and then
obtained posterior medians NFmedian

t along with 5% and 95% posterior quantiles for the nuisance flooding
in years 2001–2013, given the MSL estimate.
3.1.1. Mean Absolute Error
We first used mean absolute error as our metric to compare the performance of the four models:

1
13

X2013

t52001

jNFmedian
t 2NFtj: (15)

Table 2 contains the results. With the exception of Philadelphia, PA, the NegBin model is the worst perform-
er by far. The remaining three models show similar validation set error, with relative differences not more
than 20%, and often under 10%, except for Philadelphia, PA, San Francisco, CA, and Washington, DC. For
Port Isabel, TX, Honolulu, HI, Sewell’s Point, VA, and Washington, DC, the nonlinear least squares algorithm
failed to converge from the initial parameters after 20 random initializations.
3.1.2. Coverage
We are also interested in the uncertainty quantification of different models proposed in the methodology
section. Table 3 shows the coverage of each model, that is, the percentage of validation data across all 18
stations lying between the 5% and 95% posterior predictive intervals.

In order to make a fair comparison, for the nls method, we calculated the 90% confidence interval using a
second-order Taylor method (R package propagate [Spiess, 2014]). As seen in Figure 2, such confidence
intervals do not take into account the nonnegativity of the data; indeed the estimated 5% quantile is
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typically negative. Since the nls has less than 75% coverage, this implies that at least a quarter of the test
points lie above the estimated 95% quantile.

Note that the NegBinGP model provides a reasonably accurate uncertainty prediction (� 93%), which is
closest to the ideal of 90%. The original NegBin model is overly conservative (� 98% of points lie in 90%
interval).
3.1.3. Leave-One-Out Predictive Density
A more powerful test of out-of-sample predictive accuracy in the Bayesian setting is the Leave-one-out
cross-validation estimate of the out of sample log predictive density (lpd):

lpdloo5
XN

i51

log pðYijY2iÞ; (16)

where

pðYi jY2iÞ5
Z

pðYijhÞpðhjY2iÞdh; (17)

is the posterior probability density of the observation Yi , given Y2i – the data set with the ith observation removed.

While lpdloo is extremely computationally intensive to compute, approximations such as the Watanabe-
Aikake Information Criterion (WAIC) and Pareto-smoothed importance sampling of lpdloo (PSIS-LOO) have
been shown to work very well for low-dimensional models such as ours [Vehtari et al., 2016]. Using the PSIS-
LOO criterion, the approximate difference between the two Negative Binomial models (with and without
GP heteroscedasticity), across all stations, was

lpdNegbinGP
loo 2lpdNegbin

loo � 111:5; (18)

with a standard error of 15:6, vastly preferring the GP heteroscedasticity model. Individually, only two sta-
tions (La Jolla and San Francisco) preferred the non-GP model, although these differences in log probability
(21.3 and 20.6, respectively) were within their individual standard errors (1.4 and 1.6).

3.2. Projections
Given its good performance in calibration, we used the Negative Binomial with GP heteroscedasticity model
to give uncertainty projections for future nuisance flooding at year 2030, using the entire historical data set
as training data. In order to jointly model the uncertainties of the SLR projections along with the NF-SLR
response, we took a fully Bayesian approach as described in section 2.2.3. In particular, for each station we
modeled the underlying Gaussian Process-based dispersion /ð�Þ on a set of points ~x containing both the
historical MSL values and a fine grid of points that overlay the sea level rise (SLR) projections. We drew 10;
000 Hamiltonian Monte-Carlo samples from the posterior distribution of the parameters ð/ð~xÞ; a; b; s; a; bÞ,
and for each sample evaluated, the projected nuisance flooding at a sample from the future distribution of

MSL x2030 for the year 2030. We used linear interpola-
tion of the given SLR quantiles to form this approxi-
mate future MSL distribution. Table 4 records the
resulting NF posterior prediction quantiles due to pro-
jected SLR under the RCP2.6 and RCP8.5 scenarios.

Table 3. Coverage Percentages on Validation Data

nls Poisson NegBin NegBinGP

74.3 46.2 97.8 92.9

Table 2. Mean Absolute Errors for All 18 Stations

AMD ANJ BMA BMD BNY CSC FGA HHI KFL

nls 62.6 13.1 4.9 26.2 13.2 8.9 8.4 NaN 4.9
Poisson 53.2 11.9 3.8 26.2 12.4 8.9 7.9 17.7 4.8
NegBin 96.4 15.5 4.0 37.2 15.4 11.9 8.0 19.6 5.2
NegBinGP 57.7 13.1 4.8 27.9 14.0 9.3 7.9 18.8 5.2

LCA PPA PTX SCA SNJ SVA SWA WDC WNC

nls 5.5 13.0 NaN 5.0 14.7 NaN 3.3 NaN 32.4
Poisson 5.8 9.9 44.4 5.5 12.8 17.8 3.1 28.5 30.6
NegBin 5.8 8.1 77.7 7.6 14.3 18.5 3.3 41.2 38.6
NegBinGP 5.9 10.4 51.6 7.6 13.1 15.9 3.2 34.1 36.2
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Figure 3 also graphs the resulting predicted mean and 90% confidence intervals for all 18 stations using the
entire historical data, along with the (intermediate) RCP4.5 estimates for MSL in year 2030.

The results suggest that the median of projected NF in 2030 will be on-average � 400% higher under RCP
8.5, compared with the recent (2000–2014) experienced NF along the coasts of United States. Among all
the studied gauges, Fort Pulaski, GA, and Charleston, SC with � 860%, and Seattle, WA, and Washington,
DC, with � 105% increased NF are expected to have the highest and lowest predicted median of NF in
2030, respectively. We caution (see discussion below) that these NF projections assume a log-linear NF-MSL
relationship and are highly suspect when extrapolating far away from the historical data. We feel that this is
particularly the case for Atlantic City, NJ, Charleston, SC, Fort Pulaski, GA, Honolulu, HI, Key West, FL, Port Isa-
bel, TX, and Wilmington, NC, for which the 90% interval for MSL at year 2030 does not contain any historical
MSL observations.

4. Discussion

We have used the generalized linear model framework to effectively deal with the count nature of the data,
along with nonparametric modeling of the heteroscedasticity, quantifying the variability of nuisance flood-
ing as a function of the MSL predictor. Although our model proves to be effective for the available historical
data, caution is certainly warrented when extrapolating to future years, where MSL is projected to rise sig-
nificantly beyond the available data on which we trained the model. Even with our better accounting of the
variability of nuisance flooding, we emphasize that future projections depend heavily on the hypothesized
form of the NF-MSL relationship, as well as the MSL projections themselves. In Moftakhari et al. [2015], this
relationship was assumed to follow a power function NF5a1b �MSLh, while in this study, the natural choice
for GLM’s with count data is the log-linear relationship NF5exp ða1b �MSLÞ. Even for stations like Annapo-
lis, MD, and Charleston, SC, which exhibit a relatively strong relationship between MSL and NF, the historical
data appear insufficient to choose between these two functional forms.

The results (Figure 4 and Table 4) show a spatial pattern in the rate of increase in NF. Looking at the regions
identified by Wahl and Chambers [2016], we can see that the gauges that fall in the same region show
somehow the same expected rate of increase. The gauges in North Atlantic and Mid-Atlantic are expected
to experience � 2206100% higher NF in 2030, while Charleston, SC, and Fort Pulaski, GA, that are located
in southern Atlantic are expected to experience � 860610% more NF by then. The decreasing pattern in
NF can be detected from south to north along the West Coast of United States. La Jolla, CA, located in the
south of South Pacific region is expected to experience �780% more NF by 2030, while San Francisco, CA,
and Seattle, WA, located in the north of the South Pacific and North Pacific regions are expected to experi-
ence �430% and �100% increased NF, respectively. The components like climate-driven dynamic

Table 4. Posterior Predictive Quantiles for NF in Year 2030 Under the NegBinGP Model

2.6 8.5
Highest Average

RCP 5% 17% 50% 83% 95% 5% 17% 50% 83% 95% Experienced 2000–2014

AMD 193 338 735 1591 2722 190 342 755 1679 3159 351 180
ANJ 40 83 186 401 731 42 84 190 432 749 96 40
BMA 4 9 23 51 100 4 10 25 59 112 21 8
BMD 27 59 135 280 469 33 64 145 307 534 111 44
BNY 6 18 48 108 188 6 17 52 140 288 61 24
CSC 91 148 302 578 961 84 151 318 678 1250 61 33
FGA 55 96 185 366 618 54 87 180 399 751 45 20
HHI 86 210 641 1948 4796 87 218 646 2081 5982 119 31
KFL 2 8 34 138 437 2 8 38 166 559 20 5
LCA 3 17 62 258 846 4 17 60 250 711 23 9
PPA 8 20 52 124 226 9 23 59 129 251 69 20
PTX 303 714 2401 8539 23184 349 815 2602 9113 23837 201 81
SCA 10 26 78 206 442 10 27 78 199 427 64 15
SNJ 37 67 150 318 567 30 67 170 434 843 85 38
SVA 8 22 57 121 206 8 23 60 135 231 95 25
SWA 0 1 6 20 46 0 1 6 18 44 14 3
WDC 41 82 178 346 585 41 85 190 372 618 210 85
WNC 93 251 825 2908 8961 79 227 910 4286 14317 127 57
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Figure 3. Posterior predictive median and shaded 90% intervals for all 18 stations with the NegBinGP model, overlaid with Kopp et al.’s 90% confidence interval for MSL in year 2030
(blue errorbars).
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processes (e.g., coastal/oceanic circulation) [Sallenger et al., 2012; Bromirski et al., 2011] and vertical land
motions (e.g., tectonics activity) [Wahl et al., 2013; Burgette et al., 2009; Williams, 2013] might be contributing
factors that produce these spatial patterns. The proposed nuisance flooding prediction model is not sensi-
tive to human responses to coastal flooding (e.g., coastal flooding adaptation projects and improved flood
defenses). However, human adaptation will reduce the magnitude of impacts of SLR [Nicholls and Tol, 2006;
Nicholls et al., 2011; Hinkel et al., 2010; Oppenheimer, 2013; Nicholls et al., 2014], which will affect NF projec-
tions, especially over long time scales (i.e., multidecadal and century scale). Future studies may evaluate the
impact of these coastal infrastructural adaptations to the frequency of nuisance events.

5. Conclusions

In this study, we used a combination of generalized linear models (GLMs) and Gaussian Process (GP) models
to estimate nuisance flooding associated with local mean sea level. We have shown the superiority of the
proposed model (Negative Binomial GLM with a Gaussian Process overdispersion model) in comparison to
three other models (i.e., nonlinear least squares, Poisson, and Negative Binomial models without GP overdis-
persion). The comparison shows that the proposed model improves upon previous methodology, accounts
well for the nonstationarity in the variance of NF with respect to MSL, and better quantifies the uncertainty
of projections via a statistically robust approach. The results suggest an � 400% rise in NF by 2030 under
RCP 8.5 compared with the recent experienced average, with a considerable spatial pattern that causes the
rise to be different between gauges located in different regions along the coasts of United States.
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