Substantial increase in concurrent droughts and heatwaves in the United States

Omid Mazdiyasni and Amir AghaKouchak

Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697

Edited by Benjamin D. Santer, Lawrence Livermore National Laboratory, Livermore, CA, and approved July 31, 2015 (received for review December 3, 2014)

A combination of climate events (e.g., low precipitation and high temperatures) may cause a significant impact on the ecosystem and society, although individual events involved may not be severe extremes themselves. Analyzing historical changes in concurrent climate extremes is critical to preparing for and mitigating the negative effects of climatic change and variability. This study focuses on the changes in concurrences of heatwaves and meteorological droughts from 1960 to 2010. Despite an apparent hiatus in rising temperature and no significant trend in droughts, we show a substantial increase in concurrent droughts and heatwaves across most parts of the United States, and a statistically significant shift in the distribution of concurrent extremes. Although commonly used trend analysis methods do not show any trend in concurrent droughts and heatwaves, a unique statistical approach discussed in this study exhibits a statistically significant change in the distribution of the data.

Significance

Climatic extremes cause significant damage to the environment and society, and can cause even more damage when multiple extremes occur simultaneously. This study shows that although there is no significant trend in meteorological drought, the concurrence of meteorological droughts and heatwaves shows statistically significant increases across the United States. We show that the tail of the distribution of concurrent drought and heatwave conditions has shifted toward more frequent and extreme concurrent extremes. Our study outlines a statistical approach for investigating continuous change in the cumulative distribution functions of climatic extremes.

Author contributions: A.A. designed research; O.M. performed research; O.M. analyzed data; and O.M. and A.A. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. Email: amir.a@uci.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1422945112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1422945112

PNAS Early Edition | 1 of 6
Results

We evaluated the changes in concurrent droughts and heatwaves during 1990–2010 relative to the baseline period 1960–1980. Fig. 1 displays percent change in the occurrences of concurrent drought and heatwave events in each grid box (see also Figs. S1 and S2). Here, the percent change is based on the difference in the number of events in 1990–2010 relative to 1960–1980, divided by the total number of events. We present results for different durations (3-, 5-, and 7-d heatwaves) and extreme temperature thresholds (85th, 90th, and 95th percentiles). Fig. 1 shows that concurrences of all combinations of drought and heatwave intensities and durations have increased substantially in the south, southeast, and parts of the western United States, and have decreased in parts of the Midwest and northern United States. Notably, the longer and more severe (7-d 95th percentile) drought and heatwave concurrences have increased more than shorter, less severe concurrences (e.g., compare 7-d 95th percentile with the 3-d 85th percentile panels). This indicates that longer heatwaves (i.e., 7 d) have become more frequent in 1990–2010 compared with the shorter heatwaves (i.e., 3 d).

Investigating the empirical cumulative distribution function (CDF) of the concurrent droughts and heatwaves reveals a substantial change in extremes in 1990–2010 relative to 1960–1980 (Fig. 2). The x axes represent the percent (%) of the contiguous United States in concurrent drought and heatwave. The y axes show the corresponding cumulative probability. In each panel, the blue line is the CDF for the baseline period and the red line represents the CDF for 1990–2010. The CDF is based on data from the continental United States. As shown, for all intensities and durations during 1990–2010, the upper tail of the CDF has shifted to the right, indicating more extreme events in 1990–2010 relative to the baseline period (compare the red and blue lines in Fig. 2). Notice that the shift is far more pronounced in the more extreme 7-d 95th percentile drought and heatwave concurrence compared with other combinations. The two-sample Kolmogorov–Smirnov (KS) test (Methods) confirms that the CDFs of the concurrent droughts and heatwaves in the second period (1990–2010) are substantially different from those in the baseline period (1960–1980) at 0.05 significance level (95% confidence) for all heatwave durations and intensities except for 3-d 85th percentile heatwaves (Table 1).

Past studies focused on changes in drought trends report conflicting results (9, 21, 25, 26). Here, we investigate the percent of the continental United States in concurrent droughts and heatwaves for different durations and intensities from 1960 through 2010 (Fig. 3; see also Fig. S3). For the 90th percentile threshold, the percent of the country in drought and heatwave can range between 6% (7-d heatwave) and 9.6% (3-d heatwave); see the boxplots of the percent contiguous United States (CONUS) in concurrent drought and heatwave for all durations and severities in Fig. S4. Although the CDFs clearly indicate changes in concurrent droughts and heatwaves, the commonly used Mann–Kendall (MK) trend test (see Methods) does not show a statistically significant trend (95% confidence) in the fraction of CONUS under concurrent drought and heatwave (Table S1 provides the test statistics results). This can be attributed to limitations of statistical trend tests discussed in previous studies (27) or to lack of sensitive tools for change detection.

Here, we explore an approach based on the Cramér–von Mises change point detection test statistic (see Methods and Supporting Information) to investigate changes in concurrent droughts and heatwaves. We argue that this method is more sensitive to potential changes in time series and is well suited to investigate climate time series. This method, primarily used in economics and finance, evaluates different periods of data and determines statistically significant changes throughout time series. This method, primarily used in economics and finance, evaluates different periods of data and determines statistically significant changes throughout time series. Fig. 4 shows the Cramér–von Mises statistics for drought and heatwave concurrences during 1960–2010. The y axes indicate a dimensionless measure of divergence between the empirical distributions of data before and after any given year as a continuous function (see Methods). For all plots, the maximum divergence occurs between 1998 and 1999, indicating substantial departure of the drought and heatwave CDFs before and after
the red line in Fig. 4. This information cannot be achieved from the commonly used trend analysis method or distribution change evaluation approaches.

Recent reports suggest an apparent hiatus or so-called pause in global warming since 1999–2000 (28). Possible explanations include a long-lasting solar energy output minimum, low stratospheric water vapor, an increase in early 21st century volcanic activity, and a more frequent La Niña phase since the major El Niño event of 1997–1998 (28). However, analyses show no pause in the occurrence of hot extremes over land since 1997 (29), or even in the mean global temperature (30). Rather, during the hiatus, exceedances of 30 extreme warm days per year have increased (29). The results in Figs. 2 and 4 indicate a statistically significant (at the 0.05 significance level) change in concurrent drought and heatwave events across many regions. Fig. 2 indicates more extreme drought and heatwave concurrences in the latter two decades. This is consistent with the increase in extreme warm days during this period (29). However, this conclusion cannot be reached using the commonly used statistical trend analysis techniques (e.g., MK trend test) used in hydrology and climate literature. Unlike the MK trend test, which investigates monotonic changes in the ranks of variables over time, the Cramér–von Mises test focuses on changes in the distributions of subsamples of the data (Table S2 provides the test statistics results). Typically, climatologists evaluate a certain period against a baseline. The Cramér–von Mises test is a flexible approach that allows investigators to examine different subsamples (e.g., projected and baseline periods) for potential distributional changes. The methodology outlined in this paper shows statistical changes in extremes beyond those achieved with commonly used methods.

Data
Both precipitation and temperature data sets are from the observation-based forcings developed for the North American Land Data Assimilation System Variable Infiltration Capacity simulations over CONUS (31, 32). Daily temperature and monthly precipitation data with a spatial resolution of 1/8° are used for detecting droughts and heatwaves (see Supporting Information for more information on the data).

Methods
Here, the two-sample KS test assesses differences between the CDFs of the concurrent drought and heatwave events. KS is a nonparametric test that can evaluate two distribution functions (two-sample) based on the distance between their empirical distribution functions. The null hypothesis is that the two distribution functions are drawn from the same distribution at a certain significance level (here, $\alpha = 0.05$). We use the two-sample KS test to compare different types of droughts and heatwaves (e.g., 3-d 85th percentile, 5-d 90th percentile) in 1990–2010 relative to 1960–1980. The test indicates whether the data from the two periods come from the same distribution at a 0.05 significance level.
The MK trend test (33) here assesses the presence of a statistically significant (0.05 significance level) trend in the time series of the fraction of CONUS in concurrent drought and heatwave. The MK test is a non-parametric approach based on the empirical ranks of time series widely used in hydrology and climatology.

We use a framework based on the Cramér–von Mises change point detection to evaluate temporal changes in the concurrent drought and heatwave events (34−37). This approach detects changes in the empirical CDF by comparing two subsamples \(\hat{F}_S(x) \) and \(\hat{F}_T(x) \) of the original time series,

\[
\hat{F}_S(x) = \frac{1}{\tau} \sum_{i=1}^{\tau} I(X_i \leq x)
\]

\[
\hat{F}_T(x) = \frac{1}{n-\tau} \sum_{i=\tau+1}^{n} I(X_i \leq x),
\]

where \(F_S(x) \) and \(F_T(x) \) are the empirical CDF of the two subsamples, \(I \) is the indicator function, \(n \) denotes sample size, and the terms \(1/\tau \) and \(1/(n - \tau) \) are adjustment factors for the length of each subsample. The test measures the divergence between the empirical distributions as

\[
W_{\tau,n} = \int_{-\infty}^{\infty} \left| \hat{F}_S(x) - \hat{F}_T(x) \right|^2 dF_t(x)
\]

where \(W_{\tau,n} \) can be computed as the square of the mean distance between the empirical distributions (37, 38),

\[
W_{\tau,n} = \sum_{i=\tau+1}^{n} \left| \hat{F}_S(X_i) - \hat{F}_T(X_i) \right|^2.
\]

Larger divergence values, \(W \), indicate greater changes in the cumulative distributions. Here, the null hypothesis is that there is no change in the data over time and the two subsamples come from the same distribution. The null hypothesis is rejected if at an unspecified point \(\tau \), \(\hat{F}_S(x) \) and \(\hat{F}_T(x) \) come from statistically different distributions. Because we do not have any prior information on the position of \(\tau \) in the time series, the test involves computing \(W_{\tau,n} \) for all \(1 < \tau < n \) (39). However, for different values of \(\tau \), the variance of the two subsamples will be different. For this reason, the \(W_{\tau,n} \) statistics are adjusted so that both periods exhibit equal mean and variance for all values of \(\tau \) (39) (see Supporting Information for more). The methods in this study

Table 1. Change in distribution functions between 1960–1980 and 1990–2010 based on the KS test

<table>
<thead>
<tr>
<th>Drought and heatwave</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-d, 85th percentile</td>
<td>0.53090</td>
</tr>
<tr>
<td>5-d, 85th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>7-d, 85th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>3-d, 90th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>5-d, 90th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>7-d, 90th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>3-d, 95th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>5-d, 95th percentile</td>
<td>~0</td>
</tr>
<tr>
<td>7-d, 95th percentile</td>
<td>~0</td>
</tr>
</tbody>
</table>

Column 2 shows the corresponding \(P \) values, where \(P \) values smaller than 0.05 indicate the distribution functions are drawn from different distributions at a 0.05 significance level. Smaller \(P \) values represent higher confidence in rejecting the null hypothesis that the distributions come from the same distribution.

The MK trend test (33) here assesses the presence of a statistically significant (0.05 significance level) trend in the time series of the fraction of CONUS in concurrent drought and heatwave. The MK test is a non-parametric approach based on the empirical ranks of time series widely used in hydrology and climatology.

We use a framework based on the Cramér–von Mises change point detection to evaluate temporal changes in the concurrent drought and heatwave events (34−37). This approach detects changes in the empirical CDF by comparing two subsamples \([F_S(x) \) and \(F_T(x) \)] of the original time series,
should be applied to independent and identically distributed time series. Supporting Information provides more information on the sampling approach and temporal autocorrelation of the data (see Fig. S5 and the corresponding discussion).

Fig. 4. The Cramér–von Mises (CvM) change point statistic from 1960 to 2010. The rows change in heatwave severity (85th percentile, 90th percentile, and 95th percentile), and the columns change in heatwave duration (3 d, 5 d, and 7 d). The red lines indicate the point of maximum divergence between the distributions of concurrent drought and heatwave events.

