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[1] Validation of gridded satellite observations and climate model simulations are
fundamental to future improvements in retrieval algorithms and model developments.
Among the metrics, the contingency table, which includes a number of categorical indices,
is extensively used in evaluation studies. While the categorical indices offer invaluable
information, they do not provide any insight into the volume of the variable detected
correctly/incorrectly. In this study, the contingency table categorical metrics are extended to
volumetric indices for evaluation of gridded data. The suggested indices include (a)
Volumetric Hit Index (VHI): volume of correctly detected simulations relative to the
volume of the correctly detected simulations and missed observations; (b) Volumetric False
Alarm Ratio (VFAR): volume of false simulations relative to the sum of simulations; (c)
Volumetric Miss Index (VMI): volume of missed observations relative to the sum of missed
observations and correctly detected simulations; and (d) the Volumetric Critical Success
Index (V'CSI). The latter provides an overall measure of volumetric performance including
volumetric hits, false alarms, and misses. First, using two synthetic time series, the
volumetric indices are evaluated against the contingency table categorical metrics. Then,
the volumetric indices are used to evaluate a gridded data set at the continental scale. The
results show that the volumetric indices provide additional information beyond the
commonly used categorical metrics that can be useful in evaluating gridded data sets.
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1. Introduction

[2] Remotely sensed radar and satellite observations and
climate model simulations are subject to uncertainties and
biases arising from physical and algorithmic aspects. Evalua-
tion and uncertainty quantification of remotely sensed data
and climate model simulations are fundamental to scientific
advancements, algorithm/model developments, and integra-
tion of data into applications. For this reason, numerous
studies are devoted to evaluation of remote sensing data
[e.g., Anagnostou et al., 1998; AghaKouchak et al., 2010a;
Turk et al., 2008 ; Norouzi et al., 2011; Jackson et al., 2005,
Pinker et al., 2009; Dorigo et al., 2010; AghaKouchak
et al.,2010b; Mehran and AghaKouchak, 2013], and climate
model simulations [e.g., Phillips and Gleckler, 2006; Jiang
et al., 2012; Feddema et al., 2005; Liepert and Previdi,
2012] versus gridded ground-based observations.

[3] Recently, several efforts are devoted to development
of metrics and tools for validation of weather and climate
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models as well as satellite observations. Gleckler et al.
[2008] suggested several performance metrics for validation
of historical climate model simulations. Gilleland [2013]
proposed the spatial prediction comparison test for evalua-
tion of precipitation forecasts. AghaKouchak et al. [2011b]
developed several indices for evaluation of high quantiles of
satellite precipitation observations. Entekhabi et al. [2010]
introduced a number of metrics for evaluation of remotely
sensed soil moisture observations. Hossain and Huffinan
[2008] recommended a set of spatial, retrieval, and temporal
error metrics for satellite data sets that can advance hydro-
logic applications. Gebremichael [2010] outlined a frame-
work for validating satellite data sets using ground-based
observations. A number of geometrical and object-oriented
metrics are also proposed for spatial validation and verifica-
tion (e.g., Davis et al., 2009; AghaKouchak et al., 2011a;
Brown et al., 2004].

[4] Among the metrics, the contingency table [Wilks,
2006] which includes a number of categorical indices is
extensively used in evaluation studies [e.g., Behrangi et al.,
2011; Haile et al., 2012; Hao et al., 2013 ; Gourley et al.,
2012; Hirpa et al., 2010; Anagnostou et al., 2010]. The
contingency table is used to analyze or validate the rela-
tionship between two categorical variables and is the cate-
gorical equivalent of the scatterplot. The contingency table
metrics describe whether simulations or remote sensing
observations (hereafter, SIM) hit or miss the reference
observations (hereafter, OBS) and/or lead to false estimates
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relative to OBS. While the contingency table metrics offer
invaluable information, they do not provide any insight
into biases and errors in the magnitude of SIM relative to
OBS. Hence, errors and biases should be evaluated using
additional metrics such as the unbiased root mean square
error [Entekhabi et al., 2010], quantile bias [AghaKouchak
et al., 2011b], and relative error [Gleckler et al., 2008]. In
this study, the commonly used categorical metrics are
extended to volumetric measure such that one can investi-
gate both the categorical hit, miss, false, and their corre-
sponding volumetric errors. The main purpose of the
suggested indices is to decompose the total bias into volu-
metric errors terms associated with hit, miss, and false
components.

[s] This technical note is organized into three sections.
After the introduction, the commonly used categorical indi-
ces are reviewed briefly in section 2. The proposed volu-
metric indices are then described followed by an example
application. The last section summarizes the conclusions
and final remarks.

2. Methodology and Results

[6] The most common form of the contingency table is
2 x 2, which is used to evaluate dichotomous variables
(see Figure 1). In this table, hit (H) indicates that both ref-
erence observation and simulation detect the event,
whereas miss (M) refers to events identified by reference
observation but missed by the simulation. False (F), also

known as false alarm, represents events identified by the
simulation but not confirmed by observations. Based on the
contingency table, several metrics are defined as follows
[Wilks, 2006]:

[7] 1. The Probability of Detection (POD) describes the
fraction of the reference observations detected correctly by
the simulation: POD = H/(H + M). The POD ranges
from 0 to 1; 0 indicates no skill and 1 indicates perfect
score.

[8] 2. The False Alarm Ratio (FAR) corresponds to the
fraction of events identified by simulation but not con-
firmed by reference observations: FAR = F/(H + F). The
FAR ranges from 0 to 1; 0 indicates perfect score.

[9] 3. The Critical Success Index (CSI), also known as
the Threat Score, combines different aspects of the POD
and FAR, describing the overall skill of the simulation rela-
tive to reference observation: CSI =H/(H+ M +F).
The CSI ranges from 0 to 1; 0 indicates no skill and 1 indi-
cates perfect skill.

[10] The original contingency table metrics provide cate-
gorical measures of performance. For example, a POD of
0.8 indicates that the simulation detects 80% of events
(e.g., precipitation events). However, it does not provide
any information as to what fraction of the volume of pre-
cipitation is detected. For most climate variables one may
need to go beyond the POD and estimate the volume of the
variable of interest detected correctly. For this reason, the
Volumetric Hit Index (VHI) can be defined as follows:

X!, (SIM;|(SIM; > t&OBS; > t))

VHI

[11] SIM refers to satellite observations or climate model
simulations being evaluated, whereas OBS represents refer-
ence observations. In equation (1), n is the sample size and
t is the threshold above which the VHI is computed. A t=0
indicates evaluation of the entire distribution of simulated
versus observed variables. A higher threshold can be used
to evaluate solely the higher quantiles of simulations rela-
tive to observations (e.g., VHI of values above 50th percen-
tile of observations). By computing the VHI above different
thresholds, one can plot the performance of SIM relative to
the magnitude of OBS. The VHI ranges from 0 to 1 with 1

Event Occurred?
Reference Observations
Yes No
. A
T 2|g| Hit(H) False (F)
5 8
S ®
t Elo : True Null
é w | = | Miss (M) Event (Q)
Figure 1. The Contingency Table.

= 1
X2 (SIM;|(SIM; > t&OBS; > t)) + £, (OBS;|(SIM; < t&OBS; > t)) m

being the perfect score. A similar threshold concept can be
used to derive the Quantile Probability of Detection
(QOPOD) [AghaKouchak et al., 2011b] to describe correct
detection and identification above a certain threshold (see
equation (Al) in Appendix A).

[12] Tt should be noted that VHI is an extension of POD;
however, it is defined slightly differently. In POD, the
number of (SIM;|(SIM; >t &OBS; > t)) is the same as
the number of (OBS;|(SIM; >t &OBS; > t)). However,
the X7, (SIM;|(SIM; > t &OBS; > t)) is not identical to
X!, (OBS;|(SIM; >t &OBS; > t)) as simulated, and
observed data sets are often biased against each other. For
this reason, the VHI is defined as the volume of correctly
detected simulations relative to the volume of the correctly
detected simulations and missed observations. The VHI
should be complemented by information on bias, hit bias
(defined in Tian et al. [2009]), and mean quantile bias
(MOB = X' (SIM;|SIM; > 1)/ (OBS;|OBS; > t)) for
a better understanding of the performance of simulations
against observations.

[13] Figure 2 illustrates the differences between VHI and
POD using synthetic precipitation data. In this example,
the solid blue line shows the reference observation (OBS),
whereas the dashed red (SIM,) and green (SIM;) lines
represent two sets of model simulations (or satellite
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Figure 2. Two synthetic precipitation simulations (S/M, and SIM,) and reference observation (OBS).

observations). The bias values, defined as SIM/OBS show
that STM, underestimates by over 50%, while SIM, under-
estimates by 11% (Table 1). Also, a visual comparison
indicates that SIM, is in better agreement with OBS relative
to SIM,. However, both SIM; and SIM, lead to the same
POD of 0.83 as the number of categorical matches between
the two data sets and the observations are the same. The

S| (SIM| (SIM; > t&OBS; < 1))

VHI, on the other hand, shows 0.74 and 0.84 for SIM, and
SIM,, respectively, indicating the SIM, is in better agree-
ment with OBS compared to SIM;.

[14] Similarly, the Volumetric False Alarm Ratio (VFAR)
can be expressed as the volume of false SIM above the
threshold 7 relative to the sum of simulations:

VFAR =

[15] The denominator of equation (2) can be summarized
as total volume of simulations (37_, (SIM;|SIM; > 1)). The
VFAR ranges from 0 to 1, with 0 being the perfect score. It
should be noted that similar to QPOD, one can define the
Quantile False Alarm Ratio (QFAR) [AghaKouchak et al.,
2011b], which describes the categorical ratio of the number
of false identifications of S/M relative to the number of
exceedances above a certain threshold (e.g., 90% and 95%
quantiles), see equation (A2) in Appendix A. In the earlier

51 (SIMG|(SIM; > t&OBS; > t)) + X, (SIM;|(SIM; > t&OBS; < t))

Ef’:l(OBS,\(SIM, < t&OBS; > [))

example, the FAR values of both SIM; and SIM, are 0.19,
while a visual comparison shows that S/M, exhibits more
false precipitation (see Figure 2). As shown in Table 1, the
VFAR value of SIM, is higher than SIM, confirming the
visual comparison.

[16] The fraction of the volume of missed SIM relative to
OBS can be expressed using the Volumetric Miss Index
(VMi):

VmI

[17] The V'MI ranges from 0 to 1, with 0 being the perfect
score. Based on the definition of MISS (1 — POD), the cate-
gorical Quantile Miss Index (QMISS) can be expressed as
1 — QPOD. In the provided example, the MISS index for
both SIM, and SIM, are 0.17 (indicating 17% of categorical
miss). However, Figure 2 clearly shows that SIM,; is in

= S0, (SIM;|(SIM; > t&OBS; > 1)) + %I, (OBS;|(SIM; < (&OBS; > 1))

better agreement with OBS. The VMI values confirm that
SIM, (0.16) is superior to SIM; (0.26) with respect to the
volume of missed precipitation (see Table 1).

[18] Finally, following the original CSI concept, the Vol-
umetric Critical Success Index (VCSI) is defined as an
overall measure of volumetric performance :

Table 1. Summary Statistics for Synthetic Data S/M; and SIM, Presented in Figure 2

Simulation POD VHI FAR VFAR MISS VMI CSI VesI Bias (SIM/OBS)
SIM, 0.83 0.74 0.19 0.14 0.17 0.26 0.70 0.66 0.49
SIM, 0.83 0.84 0.19 0.16 0.17 0.16 0.70 0.71 0.89
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VCSI =

S| (SIM;|(SIM; > t&OBS; > 1))

S ((SIM;|(SIM; > 1&OBS; > 1)) + (OBS;|(SIM; < t&OBS; > 1)) + (SIM;|(SIM; > t&OBS; < 1)))

[19] The VCSI ranges from 0 to 1, with 1 being the per-
fect score. While the CSI values of SIM, and SIM, are the
same (0.70), the VCSI values indicate that the SIM, is in
better agreement with SIM, (Table 1). The QCSI (equation
(A3) in Appendix A) can be used as the categorical equiva-
lent of VCSI.

[20] For two daily precipitation data sets (OBS: Stage
IV radar-based gauge adjusted data; SIM: PERSIANN
[Sorooshian et al., 2000; Hsu et al., 1997] satellite data;
spatial resolution 0.25°), Figure 3 displays sample POD,
VHI, FAR, VFAR, MISS, VMI, CSI, and VCSI values. One
can see that the volumetric indices provide additional infor-
mation beyond the contingency table categorical metrics.
For example, the POD values range primarily between 0.4
and 0.6, while VHI values indicate that SIM detects more
than 80% of the volume of observed precipitation. While
the FAR values are relatively high (0.5 in the eastern United
States indicating around 50% false precipitation), the VFAR
values over the eastern United States show that the false
precipitation with respect to volume of precipitation is
mainly below 10%. Similarly, the MISS index shows that
SIM does not detect a large fraction of precipitation. Based
on VMI, however, the fraction of precipitation SIM does

Figure 3. POD, VHI, FAR, VFAR, MISS, VMI, CSI, and
VCSI values for two daily precipitation data sets (OBS:
Stage IV radar-based gauge adjusted data; SIM: PER-
SIANN [Sorooshian et al., 2000] satellite data; spatial re-
solution 0.25°).

not detect is relatively small (compare MISS and VMI in
Figure 3). This implies that most of the missed events in
SIM are light rainfall events. The CSI values show that for
example, in the eastern United States the overall perform-
ance score of SIM is between 0.3 and 0.5, whereas the VCSI
indicates a higher performance score (between 0.5 and 0.8)
with respect to the volume of precipitation.

[21] This example shows that the volumetric measures
provide additional information that cannot be achieved
from the original categorical metrics. These indices can
also be used to decompose biases at high quantiles of a data
set by computing them for different thresholds (e.g.,
t=25th, 50th, 75th percentiles). It is worth pointing out
that the volumetric indices should be computed along with
the categorical metrics for a comprehensive assessment of
simulations against observations.

3. Conclusions

[22] Satellite observations are projected to increase enor-
mously in future. On the other hand, weather and climate
models have been widely used to simulate historical and
future climate over various spatial and temporal scales.
Validation and uncertainty quantification of gridded satel-
lite observations and climate model simulations are funda-
mental to future improvements in retrieval algorithms and
model developments. In this study, the contingency table
categorical metrics are extended to volumetric indices for
evaluation of gridded data relative to a reference data set.
Several indices are introduced including (a) the Volumetric
Hit Index (VHI) which describes the volume of correctly
detected simulations relative to the volume of the correctly
detected simulations and missed observations; (b) the
Volumetric False Alarm Ratio (VFAR) which identifies the
volume of false simulations relative to the volume of simu-
lations; (c¢) Volumetric Miss Index (VMI) which expresses
the fraction of the volume of missed observations relative to
the volume of the correctly detected simulations and missed
observations; and (d) the Volumetric Critical Success Index
(VCSI), defined as an overall measure of volumetric per-
formance including the volumetric hits, false alarms, and
misses. The suggested indices decompose the total volumet-
ric error (bias) into volumetric errors terms associated with
hit, false, and miss components in simulations.

[23] Using two synthetic time series of simulated precip-
itation, the volumetric indices are evaluated against the
contingency table categorical indices. The synthetic exam-
ple highlights the difference between the commonly used
categorical and the volumetric metrics. The volumetric
indices are then applied for validation of a gridded satellite
data set relative to reference observations. The results show
that the volumetric indices provide additional information
beyond the commonly used categorical metrics that can be
useful in evaluating gridded data sets.
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[24] This study contributes to ongoing metrics develop-
ment efforts for validation and verification of gridded data
sets. It is noted that the introduced volumetric indices are not
meant to replace the commonly used categorical metrics.
Rather, they should be viewed as metrics that can provide
additional information and complement the contingency ta-
ble categorical metrics. Furthermore, we do not claim that
these indices are sufficient for a thorough evaluation of
gridded data sets. Additional metrics such as quantile bias,
hit bias, relative error, and unbiased root mean square error
should also be used for validation and verification studies.

[25] The authors stress that the volumetric indices,
similar to other categorical measures, offer tools to identify

S 1(SIM;|(SIM; > t&OBS; > 1))

potential discrepancies in gridded estimates or simulations
relative to reference observations. However, interpretation
of the results and methods proposed to improve estimates
or simulations depends largely on the choice of data and
the specific problem at hand. The source code for the sug-
gested volumetric indices is available to public, and inter-
ested readers can request a copy from the authors.

Appendix A

[26] Quantile Probability of Detection (QPOD) [Agha-
Kouchak et al., 2011] is defined as the POD above the
threshold ¢:

OPOD =

where ¢ is the threshold (e.g., 90% and 95% quantiles); I is
the indicator function; and #n is the number of exceedances.
OPOD represents the ratio of the number of correct identi-
fications above a certain threshold (7) relative to the total

S X(SIM;|(SIM; > t&OBS; > 1)) + S 1(OBS;|(SIM; < t&OBS; > 1))

S N(SIM;|(SIM; > t&OBS; < 1))

(A1)

number of exceedances (7). The QPOD ranges from 0 (no
detection skill) to 1 (perfect detection). Similarly, the
Quantile False Alarm Ratio (QFAR) can be expressed as

above the threshold #:

FAR = A2
0 S N(SIM;|(SIM; > t&OBS; > 1)) + S I(SIM;|(SIM; > t&OBS; < 1)) (A2)
[27] The QFAR ranges from 0 (perfect score) to 1. Quan-
tile Critical Success Index (QCSI) is defined as the CSI
S N(SIM;| (SIM; > t&OBS; > 1)) (A3)

OCSI =
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