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Abstract16

Compound extremes correspond to events with multiple concurrent or consecutive drivers17

(e.g., ocean and fluvial flooding, drought and heatwaves) leading to substantial impacts such18

as infrastructure failure. In many risk assessment and design applications, however, multi-19

hazard scenarios of extremes and compound events are ignored. In this paper, we review20

the existing multivariate design and hazard scenario concepts, and introduce a novel copula-21

based weighted average threshold scenario for an expected event with multiple drivers. The22

model can be used for obtaining multi-hazard design and risk assessment scenarios and their23

corresponding likelihoods. The proposed model offers uncertainty ranges of most likely24

compound hazards using Bayesian inference. We show that the uncertainty ranges of design25

quantiles might be large, and may differ significantly from one copula model to the other. We26

also demonstrate that the choice of marginal and copula functions may profoundly impact the27

multi-hazard design values. A robust analysis should account for these uncertainties within28

and between multivariate models that translate into multi-hazard design quantiles.29

1 Introduction30

The interdependence between two or more hazard drivers, which may not necessar-31

ily be extreme events individually, may trigger significant extreme impacts - a phenomenon32

known as a compound event [Leonard et al., 2014; Wahl et al., 2015; Mehran et al., 2017;33

Vahedifard et al., 2016]. Compound events (or impacts) may occur as a result of one of34

the following situations [Field, 2012]: 1. two or more simultaneous or successive extreme35

events (e.g., simultaneous extreme precipitation and storm surge, Moftakhari et al. [2017a]),36

2. combinations of extreme events with underlying conditions that amplify the impact (e.g.,37

droughts and heatwaves, Mazdiyasni and AghaKouchak [2015]), or 3. combinations of events38

that are not themselves extreme but collectively lead to an extreme event or impact (e.g., a39

moderate coastal flood occurring during above average tide, Moftakhari et al. [2015]).40

Frequency and severity of compound events are expected to increase in the future41

[Kopp et al., 2017; Mechler and Bouwer, 2015; Field, 2012], which in turn elevate their as-42

sociated risks, as defined by combination of threatening events (a.k.a. hazards) and adverse43

consequences (e.g., exposure and vulnerability) [Tessler et al., 2015]. This necessitates a44

deeper understanding of compound extremes and their impacts. Reliable and accurate char-45

acterization of compound hazards, as one important element of risk, requires in-depth re-46

search to advance the existing theoretical frameworks and tools [Leonard et al., 2014].47

In this study, we review the existing multivariate design and hazard scenario concepts,48

and introduce a new copula-based methodology that offers uncertainty ranges of the most49

likely compound hazards using Bayesian inference. Copulas have been proven to be a valu-50

able tool to describe and analyze the dependence structure of multiple variables in hydrol-51

ogy and climatology [De Michele and Salvadori, 2003; Favre et al., 2004; Salvadori and52

De Michele, 2004a,b; De Michele et al., 2005], and have been employed as a vehicle to de-53

velop multi-hazard design scenarios [Volpi and Fiori, 2012; Gräler et al., 2013; Salvadori54

et al., 2014]. While uncertainty analysis has received a lot of attention in different branches55

of hydrology and climate science (Sadegh and Vrugt [2013, 2014]; Sadegh et al. [2015,56

2018], and references therein), it is not broadly explored in multi-hazard design scenarios.57

This is specifically important given the relatively short length of our observations, which58

may translate into large uncertainty in the design/hazard scenarios [Sadegh et al., 2017].59

We also analyze the marginal and joint probability distributions of compound hazard60

events, and depict the importance of the choice of marginal distributions as well as copulas61

to model univariate and multivariate probabilities of natural hazards and compound events.62

Moreover, we propose a multivariate approach that estimates an expected hazard threshold63

level based on the weighted average of multiple critical levels/thresholds.64
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2 Methodology65

2.1 Critical level for hazard assessment66

In a typical hazard assessment problem, depending on the problem’s dimension, the67

probability space is divided by an equal probability point, line, or surface, hereafter referred68

to as the critical layer. We define critical layer as [Salvadori et al., 2011],69

LP
q =

{
x ∈ Rd : P(x) = q

}
(1)70

in which q is the critical probability level, x denotes a realization of the d-dimensional71

feasible space, and P is a d-dimensional probability distribution. In a univariate study, P re-72

duces to a marginal distribution, while in a multivariate study, P is defined as a copula proba-73

bility distribution that describes the correlation structure of the driving variables. LP
q divides74

the feasible space into three sub-regions [Corbella and Stretch, 2012]:75

• sub-critical (non-hazardous) region (R<
q ) which includes events (realizations) with76

probability, P, lower than the critical probability level (P < q);77

• critical layer (e.g., point, line, or surface), LP
q , on which events hold equal probability,78

q;79

• super-critical (hazardous) region (R>
q ) where events with probability, P, higher than80

the critical probability level, q, (P > q) fall.81

Depending on the study goals, one might be interested in either sub- or super-critical82

(non-hazardous or hazardous) regions. This paper focuses on coastal flooding and hence, we83

focus on super-critical (hazardous) region, R>
q (i.e., high extreme values).84

2.2 Marginal distributions85

Estimating the critical level or return period of an extreme event typically involves fit-86

ting distribution functions. We use 17 different continuous marginal distribution functions to87

find a suitable model that optimally fits the available data. Distribution functions include 1.88

Beta, 2. Birnbaum-Saunders, 3. Exponential, 4. Extreme value, 5. Gamma, 6. Generalized89

extreme value, 7. Generalized Pareto, 8. Inverse Gaussian, 9. Logistic, 10. Log-logistic, 11.90

Lognormal, 12. Nakagami, 13. Normal, 14. Rayleigh, 15. Rician, 16. t location-scale, and91

17. Weibull distributions (listed alphabetically). For a detailed description of these distribu-92

tions refer to Johnson et al. [1993, 1994], and Bowman and Azzalini [1997].93

The best marginal distribution is selected based on the Bayesian Information Crite-94

rion (BIC). The parameters of the marginal distributions are estimated through a maximum95

likelihood algorithm that minimizes the distance between empirical probability values and96

their modeled counterparts. A chi-square goodness-of-fit test is then employed to statisti-97

cally examine whether or not data is sampled from the fitted distribution at 5% significance98

level [Lewis and Burke, 1949]. Visual comparison of the fitted distribution versus empiri-99

cal probability values, as well as QQ plotting is also used to verify the acceptability of the100

distribution fit.101

In many studies only one (or a few) marginal distribution(s) are used [Zheng et al.,102

2015]. We argue that using a wide range of distributions is essential to minimize prior as-103

sumptions on the distributions of data by selecting the best fitted function. Any distribution104

holds some underlying assumptions, but our flexible approach strives to identify those closest105

to that of the underlying empirical distribution of data. We, however, share a common as-106

sumption with the literature that the underlying marginal distribution does not change over107

time [Salvadori et al., 2014].108
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2.3 From univariate to multivariate multi-hazard analysis109

Return period is a statistical measure of the expected recurrence interval of a hazard,110

such as flood, over an extended period of time. This statistical concept is frequently used for111

risk analysis and infrastructure design purposes. Univariate return period is defined as112

RP1
q =

µ

Pr
(
x ∈ R>

q

) = µ

1 − P1
q

, (2)113

in which RP1
q represents the univariate return period, P1

q signifies the marginal probability114

at the critical probability level, q, and µ is defined as average inter-arrival time of observed115

events [Salvadori et al., 2011, 2014].116

The univariate return period concept can be extended to higher dimensions for multi-117

hazard analysis. However, in a multi-hazard case, it is important to consider the dependence118

between hazard drivers. Copulas have been widely used for modeling the dependence struc-119

ture of two (or more) time-independent random variables, regardless of their marginal dis-120

tributions [Joe, 2014; De Michele and Salvadori, 2003; Favre et al., 2004; Nelsen, 2007;121

Salvadori et al., 2007, 2014; Grimaldi et al., 2016].122

Nelsen [2003] informally defines 2-dimensional copulas as a mapping tool from I2(I ×123

I) space to I, in which I ∈ [0, 1]. F1(x1) = Pr(X1 ≤ x1) and F2(x2) = Pr(X2 ≤ x2) de-124

scribe marginal distributions of continuous random variables X1 and X2, respectively, and125

H(x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2) explains their joint probability distribution. Hence,126

[F1(x1), F2(x2),H(x1, x2)] is a point in a 3-dimensional space I3. According to Sklar’s theo-127

rem [Sklar, 1959], there exists a copula function, C, for which H(x1, x2) = C [F1(x1), F2(x2)].128

If marginal distributions, F1 and F2, are continuous, copula C is unique. Similarly, a copula129

can be constructed from a joint cumulative distribution, H, as C(u1, u2) = H
[
F−1

1 (u1), F−1
2 (u2)

]
130

given [u1, u2] = [F1(x1), F2(x2)]. The definition of copula can similarly extend to d-variables,131

C(u) = H[F−1
1 (u1), F−1

2 (u2), · · · , F−1
d (ud)], (3)132

where u = [u1, u2, · · · , ud].133

We use the 26 bivariate copulas built into the Multivariate Copula Analysis Toolbox134

(MvCAT) [Sadegh et al., 2017], which includes models with one to three degrees of free-135

dom, namely 1. Gaussian, 2. t, 3. Clayton, 4. Frank, 5. Gumbel, 6. Independence, 7. Ali-136

Mikhail-Haq (AMH), 8. Joe, 9. Farlie-Gumbel-Morgenstern (FGM), 10. Gumbel-Barnett,137

11. Plackett, 12. Cuadras-Auge, 13. Raftery, 14. Shih-Louis, 15. Linear-Spearman, 16. Cu-138

bic, 17. Burr, 18. Nelsen, 19. Galambos, 20. Marshall-Olkin, 21. Fischer-Hinzmann, 22.139

Roch-Alegre, 23. Fischer-Kock, 24. BB1, 25. BB5, and 26. Tawn copulas. The equations of140

these copulas are available in Table 1 of Sadegh et al. [2017].141

MvCAT infers the copula parameters by tuning them to optimally fit the estimated142

joint probabilities to the associated empirical joint probabilities. This is a non-parametric ap-143

proach for fitting copulas that uses pseudo-observations to find copula parameters. MvCAT144

includes two optimization and uncertainty analysis frameworks, namely a gradient-based145

local optimization and a hybrid-evolution Markov Chain Monte Carlo (MCMC) simula-146

tion [Sadegh et al., 2017]. The local optimization option uses an "interior-point" algorithm147

[Byrd et al., 2000; Waltz et al., 2006], and performs a quick search of the feasible space at148

the expense of a small likelihood of getting trapped in local optima [Sadegh et al., 2017].149

MCMC, on the contrary, warrants finding an estimate of the global optimum at a small com-150

putational expense. The employed state-of-the-art MCMC algorithm numerically solves the151

Bayes’ equation,152

p(θ |D̃) = p(θ)p(D̃|θ)
p(D̃)

∝ p(θ)p(D̃|θ), (4)153
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to estimate posterior distribution of copula parameters p(θ |D̃). In Equation 4, D̃ denotes the154

empirical joint probability vector, p(θ) represents the prior distribution of copula parameters155

(uniform in our case), p(D̃) is the evidence, and p(D̃|θ) denotes the likelihood function. If we156

conveniently assume the error residuals (divergence between copula modeled, di(θ) , and em-157

pirical joint probability values, d̃i) are uncorrelated, Gaussian distributed with a zero mean158

and a constant variance (homosckedastic), the likelihood function could be defined as:159

p(D̃|θ) � L(θ |D̃) =
n∏
i=1

1
√

2πσ̃2
exp

{
−1

2
σ̃−2 [

d̃i − di(θ)
]2

}
, (5)160

where, σ̃ is an estimate of the standard deviation of measurement error, which can be esti-161

mated on-the-fly in the MCMC simulation. Each of the posterior copula parameters can be162

used to derive the multi-hazard design scenarios. However, if uncertainty analysis is not de-163

sired, mode of the posterior distribution can be used for design purposes.164

3 Multivariate hazard scenarios165

Return period in a multivariate space, as an intuitive extension of its univariate case, is166

defined as [Vandenberghe et al., 2011],167

RP2+
q =

µ

Pr
(
x ∈ R>

q

) = 1
1 − C(uq) . (6)168

in which uq = F(xq), and xq ∈ LP
q . This approach follows the "OR" definition of the joint169

return period in section 3.3 of Gräler et al. [2013]. Also see Salvadori et al. [2016].170

In this setting, an event with a pre-specified critical layer or joint return period can171

be selected for design purposes and/or hazard assessment. However, there are numerous172

combinations of x on the return period curve (associated with the critical layer) in a 2+-173

dimensional problem, RP2+
q , with equal probability [Salvadori et al., 2011; Volpi and Fiori,174

2012]. For example, there are infinite combinations of water level and fluvial discharge lead-175

ing to statistically similar 100-year events, while their impacts can be drastically different.176

An intuitive approach to select among plausible pairs of x is to assign weights to them based177

on their associated copula density values [Gräler et al., 2013; Salvadori et al., 2011; Cor-178

bella and Stretch, 2012; Salvadori et al., 2014; Zheng et al., 2015]. The copula probability179

density function (pdf) is defined as [Volpi and Fiori, 2012],180

h(x) = ∂dH(x)
∂x1∂x2 · · · ∂xd

. (7)181

We seek to offer an approach to select the desired points on the critical return period182

level, RP2+
q , based on the copula density values and the underlying uncertainties. The criti-183

cal return period level, RP2+
q , is associated with the critical layer, LP

q . In the following, we184

review the literature on this topic, and introduce two novel concepts: i) uncertainty ranges185

of the most likely design scenario, and ii) an expected scenario derived from the weighted186

ensemble average of the most likely design scenarios.187

3.1 Most likely scenario188

The most common approach in selecting one design/hazard scenario, among feasi-189

ble combinations with equal return periods, is to analyze the system under the most likely190

compound event. The most likely scenario coincides with the combination of hazards on the191

critical layer, LP
q , (a.k.a critical joint return period, RP2+

q ), with highest joint density level192

[Salvadori et al., 2014] defined as,193

xq = argmax h(x), x ∈ LP
q . (8)194
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This most likely compound event, however, may not be the most severe among the possibili-195

ties in terms of impact. So, we further explore other possibilities to sample from the critical196

level, and evaluate their hazardousness.197

3.2 Multiple samples on the critical layer, LP
q198

To obtain a distribution of potentially hazardous combination of drivers, rather than199

one single combination as in Section 3.1, we draw weighted random samples of compound200

events from the critical layer, LP
q . The sampling approach uses the copula probability den-201

sity function, h(x), as weight [Gräler et al., 2013]. The samples with higher joint probability202

density values have a higher chance of selection, but this method allows for perturbing a level203

of stochasticity into design scenarios and hazard assessment, consistent with the stochastic204

nature of hazard drivers. The output will be a set of forcing that can be used to run a numeri-205

cal or conceptual model (e.g., hydrodynamic model of an estuary).206

3.3 Uncertainty analysis of most likely scenario207

The approach proposed in this paper helps describing uncertainties associated with sta-208

tistical model structure by finding the copula family that best describes the correlation struc-209

ture between two (or more) variables. It also helps quantifying uncertainties associated with210

parameter estimation procedure. This framework attributes modeling uncertainties to cop-211

ula parameters, θ [Vrugt and Sadegh, 2013], and estimates the most likely scenarios for each212

posterior copula parameter set (as opposed to the one scenario from best copula parameter;213

Section 3.1). This approach is mathematically defined as,214

∀θi ∈ θ x
q
i = argmax h(x), xi ∈ LP

q (θi). (9)215

We treat each sample of the posterior distribution with equal weight, however, the most likely216

region of the posterior distribution inherently encompasses more samples. This method217

quantifies the uncertainties associated with the estimated most likely scenario, and analyzes218

the sensitivity of system to variation of this scenario.219

Copula model parameters are prone to measurement and model structural errors. These220

errors preclude finding a "unique" parameter combination that is significantly better than221

others [Vrugt et al., 2003]. Indeed, some parameters might be equally good according to a222

goodness-of-fit measure (the problem of "equifinality" [Beven and Binley, 1992]). Moreover,223

one parameter combination might be superior to others according to one goodness-of-fit in-224

dex, and inferior based on another. Copula parameters also depend on the period of obser-225

vation. It is hence suggested that a cohort of samples that are all acceptable provides more226

information about the system behavior as opposed to a best parameter combination, which227

is to be accepted as "true" representation of the system. Selecting best parameter may un-228

derestimate the uncertainties of the system [Sadegh and Vrugt, 2014]. See Supplementary229

Information, SI, for more detail.230

3.4 Expected scenario231

For design and risk assessment purposes, it is also useful to estimate an expected event232

that represents the non-extreme dynamics of the system. This reference scenario represents233

the situation which should be expected in any given year. This approach relaxes the need234

for defining a critical return period level, RP2+
q . Following the concept of Cumulative Haz-235

ard proposed by Moftakhari et al. [2017b], a weighted average of most likely scenarios with236

return periods of 2, 10, 25, 50 and 100 years is calculated. Weights are then assigned accord-237
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ing to the return period levels, and the approach is formulated as,238

xex =

( 5∑
i=1

1
RP2+

qi

argmax h(x), x ∈ LP
qi

)
/
( 5∑
i=1

1
RP2+

qi

)
,

RP2+
q = [2, 10, 25, 50, 100].

(10)239

This is a non-extreme threshold scenario and is not meant to replace extreme design scenar-240

ios. Weights used in Equation 10 are selected based on the most widely used return period241

levels. These weights are assigned as reciprocal of RP level, which are associated with their242

occurrence probability. Events with lower probability of occurrence (more extreme) yield243

higher design levels but get lower weights, and vice versa. We will now show how this ap-244

proach can be implemented in a coastal flooding problem with two dependent flood drivers.245

4 Results246

In this study, we analyze compound flooding hazard (i.e., combined ocean and ter-247

restrial flooding) in Washington, DC, USA. This area has a considerable number of infras-248

tructure exposed to flooding in the Potomac River channel [Ayyub et al., 2012; Moftakhari249

et al., 2017b]. The dynamics of flooding is strongly determined by the nonlinear interactions250

between freshwater inflows and estuary water level [Hoitink and Jay, 2016] (See SI for de-251

tailed physical description of this interdependence). Thus, modeling the correlation structure252

between flood drivers is crucial for appropriate characterization of flooding dynamics. In253

fact, previous studies have shown that ignoring the interactions between ocean and terrestrial254

flooding can lead to biased risk estimates [Moftakhari et al., 2017a]255

Here, we consider the daily freshwater inflow estimates by the United States Geologi-256

cal Surveys (USGS; gauge number 01646500) and hourly water level observations provided257

by National Oceanic and Atmospheric Administration (NOAA; gauge number 8594900) as258

major flood drivers. The pair of interest for any given year is set to be the largest annual259

freshwater inflow to the estuary, and the corresponding largest observed hourly water level260

within ±1 day. We first investigate the inter-dependency of these two natural hazards in an261

83-year record (hence 83 pairs of drivers) through different correlation coefficients namely,262

Kendall’s rank (r = 0.5274, p−value = 0.0000), Spearman’s rank correlation (r = 0.7041, p−263

value = 0.0000), and Pearson correlation coefficient (r = 0.9125, p − value = 0.0000), all264

of which display significant dependence between the two variables. Hence, we have used our265

proposed model to describe flood hazard considering both (terrestrial and ocean) drivers and266

their inter-dependencies.267

We first select the best fitted marginal distributions, F1 and F2, to the observed flood268

drivers (Section 2.2) based on the BIC goodness-of-fit metric. Figures S2A and S2C (SI)269

show the fitted distributions (red line) compared to the observed (blue dots) river discharge270

and water level. Figures S2B and S2D display the QQ plots to visually examine the goodness-271

of-fit of the distributions to the observed data. In our study, a Log-logistic distribution is se-272

lected to fit both variables (Table S1). The Chi-square test for both drivers at 5% significance273

level also confirms our visual inspection that fitted distributions are acceptable.274

Then, we evaluate 26 bivariate models using MvCAT toolbox [Sadegh et al., 2017].275

The copula parameters and their posterior distributions are inferred using MCMC simula-276

tion within a Bayesian framework. In this study, the Fischer-Hinzmann copula is selected as277

the best model to describe the dependence structure among the studied variables, based con-278

sistently on all goodness-of-fit criteria (AIC, BIC, Likelihood, NSE, and RMSE). However,279

this copula does not have a closed-form joint probability density function due to the "min"280

operator in its joint cumulative distribution function, which leaves the derivative undefined281

at X1 = X2 (when the two inputs to copula are equal). This impedes finding the most likely282

scenario (Section 3.1) of compound hazard effects, among others. Hence, we select the Joe283
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A B C D

E F

Figure 1. Marginal cumulative distributions of water level (A) and river discharge (E), and their associated
univariate return periods (C and F; y-axis presented in log-scale). Joint probability isolines derived from
Joe copula are displayed in panel B, and associated return period isolines are depicted in panel D. Both joint
probability and multivariate return period isolines are color coded with joint density levels with blue repre-
senting lower densities and red denoting higher densities. Joint probability density values are re-normalized
to [0,1] range for visualization proposes. Blue dots are observed pairs of river discharge annual maxima and
associated water levels.

286

287

288

289

290

291

292

copula (second best model) for the rest of this study. Figure 1 shows the joint probability iso-284

lines (B) and return period levels (D) based on the Joe copula.285

We then use the Joe copula model to derive design quantiles, and analyze the associ-293

ated compounding hazards. Figure 2 shows the river discharge - water level fluctuation de-294

sign pairs associated with a compound event with joint return period of 50-year based on the295

different approaches described in Section 3. The design values of river discharge and water296

level, based on the most likely design scenario are 9820.50 m3/s and 2.48 m, respectively.297

These are larger than the design values derived through univariate analysis (river discharge298

of 9202.01 m3/s and water level of 2.39 m). This clearly highlights that ignoring the interac-299

tions between flood drivers can lead to underestimation of the hazard.300

To provide a broader range of multivariate design scenarios, Figure 2C shows 100 sam-301

ples (black dots) randomly drawn from the RP2
0.98 (50-year event) curve based on the weights302

assigned by the copula density values (Section 3.2). Design quantiles for this approach us-303

ing the Joe copula range between 9202.00 and 12632.37 m3/s for river discharge (a range304

that equals to 97% of the mean annual maximum river discharge) and 2.39 to 3.58 m for wa-305

ter level (a range that is as wide as 86% of average water level). The main limitation of this306

approach is that the ranges of discharge and water level are very wide and cover most of the307

entire distribution. Figure 2C also displays the uncertainty space of design quantiles based308

on the most likely scenario (Section 3.3). Each red dot represents the most likely scenario309

for one parameter set from the posterior distribution of the Joe copula, derived using MCMC310

simulation within a Bayesian framework. Each of these design levels could be acceptable311

given the available information in the observed data, which depicts the importance of taking312
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A B C

D

Figure 2. Multivariate design quantiles based on different approaches. Panel A and D display univariate
return period curves for water level and river discharge, respectively. Y -axis for these two plots is in log-scale.
Panel B shows a joint 50-year return period curve, color coded with the joint density levels. Light grey ar-
rows display the univariate design quantiles, whereas dark grey arrows depict the most likely scenario design
quantiles. Panel C displays, in black dots, multiple samples on the joint 50-year return period level randomly
drawn with density levels as weight. In this plot, red dots show uncertainty space of most likely scenario
design quantiles for posterior samples of the Joe copula model.

330

331

332

333

334

335

336

uncertainty quantification into consideration for an informed design and management prac-313

tice.314

Thus far, we have focused on the design quantiles and the associated hazards based315

on a pre-defined return period. Here, we propose a multivariate expected event regardless316

of return period level (see the theory in Section 3.4). Table S4 shows the expected events’317

boundary conditions for different copula families. In other words, the threshold levels of318

Table S4 represent the compound hazards of the system at any given year with the highest319

likelihood. For the Joe copula, an expected event is defined by a river discharge of 4492.23320

m3/s and a water level of 1.58 m. A closer look at Table S4 shows that the threshold quan-321

tiles of an expected event given different copula models is fairly constrained, and fall within322

the interval of [4490.77 m3/s - 5042.82 m3/s] for river discharge (a range that equals to 16%323

of the mean annual maximum discharge), and [1.58 m - 1.72 m] for water level (a range that324

equals to 10% of the mean water level). Note that expected scenario quantiles refer to a non-325

extreme event that is most likely to occur in any given year, and are significantly smaller than326

the extreme multi-hazard scenarios. Non-extreme scenarios show lower uncertainty ranges,327

compared to extremes; however, we design systems to withstand the extreme scenarios, and328

we should be wary of the uncertainties in our design and hence probability of failure.329

One key question is that to what extent the choice of multivariate model (here, choice337

of copula) affects the estimated hazard. Figure 3 plots 100 weighted random samples on the338

RP2
0.98 (50-year) curve (black dots) and uncertainty ranges of the most likely scenario based339

on the posterior distribution of copula parameters (red dots) for a group of six randomly se-340

lected representative copulas (also see SI). This figure shows that choice of copula model and341
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A B C

D E F

Figure 3. Multivariate design quantiles based on 100 weighted random samples on the critical layer (50-
year joint return period curve) displayed with black dots, and uncertainty ranges of most likely scenario
depicted with red dots for a set of six randomly chosen copulas, namely Gaussian (A), Clayton (B), Gumbel
(C), Joe (D), Nelsen (E), and Tawn (F).

352

353

354

355

underlying uncertainty of copula parameters can potentially translate into large ranges of de-342

sign (or critical layer) quantiles. The weighted random samples (black dots) on the RP2
0.98343

curve, for all the copulas, cover a relatively large interval as wide as 246% of the mean an-344

nual maximum discharge and 159% of the average water level. More importantly, the uncer-345

tainty ranges of the most likely scenario significantly differ from one copula model to another346

(Figure 3). For example, the uncertainty ranges of the most likely design quantile for the Joe347

copula model is as wide as 6% of the mean annual maximum discharge and 3% of the mean348

water level, respectively, while these ranges significantly expand for the Gaussian copula to349

337% of the mean annual maximum discharge and 97% of the average water level, respec-350

tively.351

Uncertainties in the most likely scenario (and other scenarios) stem from multiple356

sources, including the goodness-of-fit of the models (both marginal and multivariate model),357

model structural errors, posterior distributions of the copula model parameters, and even the358

observed joint probability errors. The observations to which the univariate and multivariate359

models are fitted to are often not long enough to sufficiently constrain the model parameters,360

specifically for multi-dimensional models [Sadegh et al., 2017]. The length of record is also361

a constraining factor in terms of evaluating out-of-range return periods, requiring extrapo-362

lation which exponentially increases the design uncertainties. Currently, most publications363

in hydrology and climate journals consider very few multi-variate models in their analysis,364

which may lead to large biases and errors in estimated joint return periods, critical levels, etc.365

Such errors can be minimized through a rigorous copula and marginal fitting, chosen from a366

wide range of options. This ensures the selected copulas and marginals are good represen-367

tatives of the under-study system. We also note that some copula families with rather simi-368

lar performance metrics may show significantly different forms of probability isolines (see369

Sadegh et al. [2017]). This raises the question of which model should be trusted to single-370
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handedly provide the design quantiles. We demonstrate that a multi-model analysis provides371

more robust design quantiles and hence should be adopted by the community (Figure S1).372

Finally, uncertainty estimates (as in Figure 3) should be transparently communicated to373

those responsible for infrastructure design and risk assessment, as well as to the public [Cov-374

ello et al., 1986; Faulkner et al., 2007; Adger et al., 2013; Buchecker et al., 2013]. Neglect-375

ing uncertainties in the characterization of hazardous events can potentially lead to adopt-376

ing inefficient or over-designed mitigation strategies [Pielke et al., 2007; Keller et al., 2008;377

Moser and Ekstrom, 2010]. Traditional approaches in multivariate analysis literature do not378

fully address the sources of uncertainties. We argue that the proposed approach in this paper379

offers an avenue to account for the underlying uncertainties in multi-hazard assessment.380

5 Conclusions381

It is important to consider the compounding effects of multiple inter-dependent ex-382

tremes or drivers to accurately characterize the underlying hazard. In this paper, we discuss383

multiple design scenarios and hazard assessment frameworks associated with compound384

events, and their uncertainties based on a multivariate framework. Here we summarize our385

conclusions:386

• The choice of copula is crucially decisive for multivariate hazard assessment and de-387

sign quantile estimation (Figure 3), which has not received the attention it deserves388

in the literature. In most hydrology and climate studies, only few models (typically a389

handful) are tested for fitting and multivariate analysis. In our coastal flooding exam-390

ple, the most likely compound extreme scenario varies in a range that equals to 56%391

of the mean annual maximum river discharge and 178% of the average water level, for392

different copula models. We recommend using a wide range of models with different393

characteristics to ensure the fitted multivariate model is representative.394

• Translation of modeling uncertainties into multivariate design quantiles is a critical395

aspect of multivariate analyses. While some copula models show a relatively confined396

level of uncertainty (e.g., Joe copula with the most likely design quantiles’ ranges397

equal to 6% and 3% of the mean annual maximum river discharge and the mean water398

level, respectively), others display a large range of uncertainty in their design quan-399

tiles (e.g., Gaussian copula with the most likely design quantiles’ ranges equal to400

337% and 97% of the mean annual maximum river discharge and the mean water401

level, respectively). For different case studies and data sets, the best choice of model402

with response to uncertainty bounds may change.403

• We also note that the choice of marginal distribution plays an important role in de-404

termining the design quantiles. Figure S2 (SI) shows significant divergence between405

different marginal distributions representing river discharge (A) and water level (B).406

But this issue is not limited to multivariate analysis and the same applies to univariate407

applications.408

Moreover, in this paper we introduce the concept of a multi-hazard expected event,409

with threshold quantiles derived based on the notion of weighted average of possible events.410

This multivariate event shows less sensitivity to the choice of copula. In our coastal flooding411

case study, for example, such threshold scenario ranges between [4490.77 m3/s - 5042.82412

m3/s] for annual maximum river discharge and [1.58 m - 1.72 m] for water level, extents of413

which equals to 16% and 10% of the mean annual maximum river discharge and the mean414

water level, respectively.415
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