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Abstract We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a
wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework
with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the
underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to
approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain
Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula
parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative
to the fitting uncertainties. We show that the commonly used local optimization methods for copula
parameter estimation often get trapped in local minima. The proposed method, however, addresses this
limitation and improves describing the dependence structure. MvCAT also enables evaluation of
uncertainties relative to the length of record, which is fundamental to a wide range of applications such as
multivariate frequency analysis.

1. Introduction

Hydrological and climatological variables are interdependent, and we often use multivariate methods to
understand their interactions and associations. Examples include storm duration and intensity [De Michele
and Salvadori, 2003; Salvadori and De Michele, 2004a], flood peak and volume [De Michele et al., 2005], con-
current drought and heat waves [AghaKouchak et al., 2014], drought duration and severity [Lee et al., 2013;
Mishra and Singh, 2009], and precipitation and soil moisture [AghaKouchak, 2015]. Univariate distributions
may not be sufficient to describe hydrological variables (or events) that bear intrinsic multivariate character-
istics. For instance, the commonly used univariate frequency/risk assessment methods might not be suffi-
cient to describe the failure probability or recurrence intervals of interdependent extreme events [Salvadori
et al., 2016; Grimaldi and Serinaldi, 2006].

The concept of copula, as one approach from the cohort of several multivariate analysis methods, is widely
used to model the dependence structure of two (or more) random variables. While the rise of this concept
dates back to the 1950s, copula gained popularity in hydrology and climatology after the early works of De
Michele and Salvadori [2003], Favre et al. [2004], Salvadori and De Michele [2004a,b], and De Michele et al.
[2005]. Multivariate methods and copulas have been used in many fields of study including finance [Rachev,
2003], insurance [Charpentier and Segers, 2007], integrated risk management [Embrechts et al., 2001],
drought monitoring [Hao and AghaKouchak, 2013], flood risk analysis [Jongman et al., 2014], frequency anal-
ysis [Parent et al., 2014], rainfall simulation and analysis [Li et al., 2013; Vernieuwe et al., 2015], dependence
analysis of hyetographs and hydrographs [Serinaldi and Kilsby, 2013], and extreme value analysis [Renard
and Lang, 2007; Ribatet and Sedki, 2013]. Recent studies have striven to open new frontiers to address real-
world problems using copulas. For example, Wahl et al. [2015] have examined, using copulas, the cooccur-
rence probabilities of heavy precipitation and storm surge in the contiguous US and documented that the
compounding risks of such events pose a higher risk than each of them in isolation. Other studies have
compared regional flood peak-volume dependence structure using the concept of copula [Szolgay et al.,
2016], have used copula for multivariate analysis of return period [Serinaldi, 2015], and have attempted to
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transfer the dependence structure information from one watershed to another using copulas [Grimaldi
et al., 2016]. For a detailed reference list of copula literature in the field of hydrology, refer to stahy.org.

There are more than a dozen copula families that have been used in the hydrological and climatological lit-
erature. However, most studies are limited to a handful of copulas (i.e., Gaussian, t-, Frank, Gumbel, and
Clayton). Copula families differ in their dependence structure and complexity (i.e., the number of parame-
ters ranging from one to three). Copula parameters reflect the strength of mutual dependence between
two (or more) variables [Balakrishna and Lai, 2009] and are generally estimated through (1) a theoretical
relationship (if exists) between the parameter and empirical dependence measures such as Kendall’s s and
Spearman’s q and/or (2) inference from empirical multivariate probability distribution of data. The most
common practice for parameter estimation is using local optimization algorithms, such as Newton-Raphson
method [Salvadori and De Michele, 2004b; B�ardossy, 2006; Gr€aler et al., 2013; Ribatet and Sedki, 2013]. Local
optimization approaches benefit from efficient (mostly gradient-based) search algorithms, but suffer from
susceptibility to getting trapped in local optima [Duan et al., 1992]. In a similar line of study, Brahimi et al.
[2015] introduced a new L-moment-based approach to estimate the copula parameters, which outperforms
the traditional approaches in terms of bias and computational costs, and is less sensitive to data outliers.
However, these methods are not usually capable of characterizing the underlying uncertainties. In recent
years, global optimization approaches and Bayesian analysis have also been explored for inferring copula
parameters [Pitt et al., 2006; Min and Czado, 2010; Smith et al., 2012; Parent et al., 2014; Kwon and Lall, 2016].

Despite the recent progress, there are still challenges and research gaps that we address in this paper,
namely, (a) lack of a comprehensive and generalized framework for estimating the underlying uncertainties
of a wide range of copulas, (b) lack of a robust and efficient algorithm to estimate the posterior distribution
of copula parameters, and (c) extending the commonly used copulas in hydrology and climatology through
a generalized software package that allows not only parameter inference but also different ways of ranking
the best choice of copula for the underlying data. In this paper, we introduce the Multivariate Copula Analy-
sis Toolbox (MvCAT) that employs Markov Chain Monte Carlo (MCMC) simulation within a Bayesian frame-
work to estimate copula parameters and the underlying uncertainties. MCMC simulation estimates the
posterior distribution of parameter values, which are then translated into uncertainty ranges for the copula
probability isolines. The MCMC simulation searches for the region of interest with multiple chains running
in parallel. Chains share information on the fly, characterize the posterior region (even in the presence of
multimodality), and estimate the global optimum.

MvCAT includes 26 copula families, discussed in section 2.1, including a number of copula families that
have not been fully explored in the hydrological literature. MvCAT includes both the commonly used local
optimization method and a state-of-the-art MCMC framework. If MCMC is selected, MvCAT automatically
plots posterior parameter distributions of the chosen copula(s), as well as the fitted (and empirical) probabil-
ity isolines. Moreover, a summary report is automatically generated that ranks the performance of selected
copulas based on Maximum Likelihood, Akaike Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC). Summary report also details on the best and 95% uncertainty ranges of parameters of each cop-
ula, and their best performance in terms of root mean square error (RMSE) and Nash-Sutcliff efficiency
(NSE). In this toolbox, we strive to analyze the existing dependence structure between the hydrologic varia-
bles and beyond. Generating synthetic multivariate data sets, however, is beyond the scope of the current
study and interested readers are referred to Nelsen [2007] for that purpose.

The remainder of this paper is organized as follows: section 2 briefly describes the concept of copulas and
multivariate dependence analysis (section 2.1) and introduces the copula families used in MvCAT. The paper
then discusses the model inference problem in general terms (section 2.2) and continues with the definition
of Bayesian analysis (section 2.3) for updating a prior belief about a hypothesis when new information came
to light. Section 2.4 introduces a hybrid-evolution MCMC algorithm that numerically and iteratively esti-
mates the posterior solution of the Bayes’ equation using differential evolution, snooker update, and adap-
tive metropolis within Gibbs sampling. Next, we discuss the measures of goodness of fit (AIC, BIC, RMSE,
and NSE) to compare the performance of different copula models (section 2.5), and then introduce the Mul-
tivariate Copula Analysis Toolbox (MvCAT) to perform dependence analysis using a rigorous and compre-
hensive approach (section 2.6). We proceed with the results section (section 3) that discusses a drought
analysis study based on bivariate analysis of precipitation and soil moisture, and a flood frequency analysis
based on flood peak and volume joint distribution. Section 4 concludes this paper with a summary of the
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multivariate dependence analysis and provides some conclusions derived from the uncertainty analysis of
presented case studies.

2. Materials and Methods

2.1. Copulas
Copulas are mathematical functions that ‘‘join’’ or ‘‘couple’’ two or more time-independent variables [Nel-
sen, 2003], regardless of their univariate distributions [Genest and Favre, 2007]. They are a systematic way of
studying the underlying dependence structure and providing a basis for constructing families of bivariate
(multivariate) distributions [Fisher, 1997]. A copula can be informally defined as a mapping tool from I2 (F, G)
to I (H) [Nelsen, 2003], when ½FðxÞ;GðyÞ;Hðx; yÞ� is a point in I3 (I 2 ½0; 1�). X and Y are then continuous
random variables with distribution functions FðxÞ5PðX � xÞ and GðyÞ5PðY � yÞ, and Hðx; yÞ5PðX � x; Y � yÞ
is a function that describes their joint distribution.

Sklar [1959] first used the word copula in a statistical and mathematical context and introduced a theorem
that is named after him [Nelsen, 2003],

‘‘Let H be a joint cumulative distribution function with marginal univariate distributions F and G. Then there
exists a copula C so that Hðx; yÞ5C FðxÞ;GðyÞ½ �. This copula C is unique, if F and G are continuous.’’

Similarly, if there exists a joint distribution H with continuous marginals F and G, u5FðxÞ and v5GðyÞ, one
can establish the associated copula as Cðu; vÞ5H F21ðuÞ;G21ðvÞ½ �. One of the most widely used copula fami-
lies in the literature is the Gaussian copula defined as,

Chðu; vÞ5UR /21ðuÞ;/21ðvÞ
� �

; (1)

where UR denotes the joint cumulative distribution function of a bivariate normal vector with zero means
and covariance matrix R, and /21 notifies inverse of a standard Gaussian distribution. In this paper we
employ 26 parametric models of copula families which are explained in detail in Table 1. We have selected
copula families with simple closed form mathematical formulation, which are amenable for model infer-
ence, and represent different forms of dependence structures. A much larger pool of copula families is avail-
able at http://www.maths.manchester.ac.uk/~saralees/chap20.pdf.

In this paper, we have concentrated our attention on bivariate copulas, since bivariate analysis is commonly
used in the hydrological and climatological literature. While some copula families are limited in the number
of dimensions they can handle, others can be extended to higher dimensions. Interested readers can refer
to Nelsen [2007]; Joe [2014] for more information about copulas and their properties.

2.2. Model Inference
In a modeling analysis, an unknown process, K, links observations, ~Y, to ‘‘true’’ parameters, h� , through

~Y5Kðh�Þ1E; (2)

in which E denotes a vector of measurement errors [Sadegh and Vrugt, 2013]. A model hypothesis,M, simu-
lates the system response, ~Y, given a d31 vector of parameter values, h5fh1; h2; � � � ; hdg, and forcing, ~I
[Vrugt and Sadegh, 2013],

Y5Mðh;~IÞ: (3)

A vector e5~Y2Y then characterizes error residuals. e5fe1; e2; � � � ; eng (n: number of observations) includes
the effects of model structural errors (M systematically deviating from K), as well as calibration data, input
and parameter errors [Sadegh and Vrugt, 2014]. In the case of a copula, model structural error arises from
the deviation between the copula formulation and the true dependence structure of the variables, calibra-
tion data error stems from the uncertainties in the empirical estimates of the joint probability distribution,
and input error is due to the measurement uncertainties of the underlying variables that are translated into
the uniform marginals.

For a model,M, we wish to estimate the parameters, h, by tuning them such that model simulations, Y, fit
the observations, ~Y, given the forcing, ~I [Sadegh et al., 2015]. In the case of copula modeling, ~Y represents
the joint probability of observed variables and Y signifies the copula predicted probability values. Empirical
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Table 1. Copula Families and Their Closed-Form Mathematical Description

Name Mathematical Descriptiona Parameter Range Reference

Gaussian ð/21ðuÞ

21

ð/21ðvÞ

21

1

2p
ffiffiffiffiffiffiffiffiffiffiffi
12h2
p exp 2hxy2x22y2

2ð12h2Þ

� �
dxdyb

h 2 ½21; 1� Li et al. [2013]

t ðt21
h2
ðuÞ

21

ðt21
h2
ðvÞ

21

C ðh212Þ=2ð Þ

Cðh2=2Þph2

ffiffiffiffiffiffiffiffiffiffiffi
12h2

1

q 11
x222h1 xy1y2

h2

� �ðh212Þ=2
dxdyc

h1 2 ½21; 1� and h2 2 ð0;1Þ Li et al. [2013]

Clayton max ðu2h1v2h21; 0Þ21=h h 2 ½21;1Þn0 Clayton [1978]

Frank
2

1
h

ln 11
ðexp ð2huÞ21Þðexp ð2hvÞ21Þ

exp ð2hÞ21

� �
h 2 Rn0 Li et al. [2013]

Gumbel
exp 2 2ln ðuÞð Þh1 2ln ðvÞð Þh

h i1=h
	 


h 2 ½1;1Þ Li et al. [2013]

Independence uv Nelsen [2003]
Ali-Mikhail-Haq (AMH) uv

12hð12uÞð12vÞ
h 2 ½21; 1Þ Ali et al. [1978]

Joe
12 ð12uÞh1ð12vÞh2ð12uÞhð12vÞh
h i1=h h 2 ½1;1Þ Li et al. [2013]

Farlie-Gumbel-Morgenstern (FGM) uv 11hð12uÞð12vÞ½ � h 2 ½21; 1� Nelsen [2007]

Gumbel-Barnett u1v211ð12uÞð12vÞexp 2hln ð12uÞln ð12vÞ½ � h 2 ½0; 1� Gumbel [1960] and Barnett [1980]

Plackett
11ðh21Þðu1vÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ðh21Þðu1vÞ½ �224hðh21Þuv

q
2ðh21Þ

h 2 ð0;1Þ Plackett [1965]

Cuadras-Auge min ðu; vÞ½ �hðuvÞð12hÞ h 2 ½0; 1� Cuadras and Aug�e [1981]

Raftery
u2

12h
11h

u
1

12h v
2h

12h2v
1

12h

� �
; if u � v

v2
12h
11h

v
1

12h u
2h

12h2u
1

12h

� �
; if v � u

8>>><
>>>:

h 2 ½0; 1Þ Nelsen [2007]

Shih-Louis ð12hÞuv1hmin ðu; vÞ; if h 2 ð0;1Þ

ð11hÞuv1hðu1v21ÞWðu1v21Þ; if h 2 ð21; 0�

(
Shih and Louis [1995]

WðaÞ51 if a � 0 and WðaÞ50 if a< 0

Linear-Spearman u1hð12uÞ½ �v; if v � u and h 2 ½0; 1�

v1hð12vÞ½ �u; if u < v and h 2 ½0; 1�

ð11hÞuv; if u1v < 1 and h 2 ½21; 0�

uv1hð12uÞð12vÞ; if u1v � 1 and h 2 ½21; 0�

8>>>>><
>>>>>:

h 2 ½21; 1� Joe [2014]

Cubic uv 11hðu21Þðv21Þð2u21Þð2v21Þ½ � h 2 ½21; 2� Durrleman et al. [2000]

Burr
u1v211 ð12uÞ21=h

1ð12vÞ21=h
21

h i2h h 2 ð0;1Þ Frees and Valdez [1998]

Nelsen 21
h

log 11
exp ð2huÞ21½ � exp ð2hvÞ21½ �

exp ð2hÞ21

	 

h 2 ð0;1Þ Nelsen [2007]

Galambos
uvexp ð2ln ðuÞÞ2h

1ð2ln ðvÞÞ2h
n o21=h h 2 ½0;1Þ Huynh et al. [2014]

Marshall-Olkin min u 12h1ð Þv; uv 12h2ð Þ� �
h1; h2 2 ½0;1Þ Huynh et al. [2014]

Fischer-Hinzmann
h1 min ðu; vÞ½ �h2 1ð12h1Þ½uv�h2

n o1=h2 h1 2 ½0; 1�; h2 2 R Fischer and Hinzmann [2007]

Roch-Alegre

exp 12 ð12ln ðuÞÞh1 21
� �h2

1 ð12ln ðvÞÞh1 21
� �h2

 �1=h2

11

" #1=h1

8<
:

9=
;

h1 2 ð0;1Þ; h2 2 ½1;1Þ Roch and Alegre [2006]

Fischer-Kock
uv 11h2 12u1=h1ð Þ 12v1=h1ð Þ
h ih1 h1 2 ½1;1Þ; h2 2 ½21; 1�

BB1
11 u2h1 21ð Þh2

1 v2h1 21ð Þh2
h i1=h2

	 
21=h1 h1 2 ð0;1Þ; h2 2 ð1;1Þ Genest and Favre [2007]
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joint probability values of ~Y are derived from the observations using Gringorten plotting position, and
inputs to the copula models, the uniform marginals u and v, are also estimated in a similar manner (with a
difference of using univariate analysis).

2.3. Bayesian Analysis
Bayesian analysis has been successfully employed in different fields [Geweke, 1989; Jarrell and Gubernatis,
1996; Huelsenbeck et al., 2001; Huelsenbeck and Ronquist, 2001; Ellison, 2004; Box and Tiao, 2011], including
hydrology [Wood and Rodr�ıguez-Iturbe, 1975; Kuczera, 1999; Thiemann et al., 2001; Kavetski et al., 2006; Cheng
et al., 2014], for model inference and uncertainty quantification purposes. Bayes’ theorem updates the prior
probability (belief) of a certain hypothesis when new information is acquired. Bayes’ law conveniently attrib-
utes all modeling uncertainties to the parameters and estimates the posterior distribution of model parame-
ters through

pðhj~YÞ5 pðhÞpð~YjhÞ
pð~YÞ

; (4)

in which pðhÞ and pðhj~YÞ signify prior and posterior distribution of parameters, respectively. pð~YjhÞ ffi Lðhj~YÞ
denotes likelihood function, and pð~YÞ5

Ð
h

pð~YjhÞdh is coined evidence. Evidence, being a constant value in
each modeling practice, can be simply removed from the analysis, if the main goal is to estimate the posterior
distribution of parameters, and posterior parameter distributions can be estimated through

pðhj~YÞ / pðhÞpð~YjhÞ: (5)

In the absence of useful information regarding the prior distribution of parameters, one may employ a flat
uniform prior [Thiemann et al., 2001]. Assuming error residuals are uncorrelated, homoscedastic, and
Gaussian-distributed with mean zero, the likelihood function can be formulated as [Sorooshian and Dracup,
1980]

Lðhj~YÞ5
Yn

i51

1ffiffiffiffiffiffiffiffiffiffi
2p~r2
p exp 2

1
2

~r22 ~y i2yiðhÞ½ �2
	 


; (6)

where ~r is an estimate of standard deviation of measurement error. As Thyer et al. [2009] state, ‘‘it is perhaps
the most widely used calibration criterion in hydrology.’’ For simplicity and numerical stability, this equation
is usually logarithmically transformed to

‘ðhj~YÞ52
n
2

ln ð2pÞ2 n
2

ln ~r22
1
2

~r22
Xn

i51

~y i2yiðhÞ½ �2: (7)

Given the underlying assumptions about error residuals, ~r can be estimated as

~r25

Xn

i51

~y i2yiðhÞ½ �2

n
: (8)

We can, then, further simplify equation (7) to

Table 1. (continued)

Name Mathematical Descriptiona Parameter Range Reference

BB5
exp 2 ð2ln ðuÞÞh1 1ð2ln ðvÞÞh1 2 ð2ln ðuÞÞ2h1h2 1ð2ln ðvÞÞ2h1h2

� �21=h2
� �1=h1

( )
h1 2 ½1;1Þ; h2 2 ð0;1Þ Genest and Favre [2007]

Tawn
exp ln uð12h1Þð Þ1ln vð12h2Þð Þ2 2h1ln ðuÞð Þh3 1 2h2ln ðvÞð Þh3

h i1=h3

	 

h1; h2 2 ½0; 1�; h3 2 ½1;1Þ Huynh et al. [2014]

aThese formulations might not be unique. Please refer to the associated reference.
b/ represents a standard Gaussian distribution.
cth2 represents a Student’s t distribution with h2 degrees of freedom.
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‘ðhj~YÞ52
n
2

ln ð2pÞ2 n
2

2
n
2

ln

Xn

i51

~y i2yiðhÞ½ �2

n
: (9)

For comparison purposes, we can conveniently remove the constants and present log-likelihood function
as,

‘ðhj~YÞ ’ 2
n
2

ln

Pn
i51

~y i2yiðhÞ½ �2

n

8<
:

9=
;: (10)

Bayes’ equation (5) is usually difficult, if not impossible, to solve analytically and numerical methods, such as
MCMC simulation, are adopted to sample from the posterior distribution.

Further clarification is warranted here that we impose no assumption, whatsoever, on the posterior distribu-
tion of parameters. The aforementioned assumptions of ‘‘homoscedasticity, no correlation, and Gaussian
distribution with mean zero’’ only apply to the distribution of error residuals which is used to construct the
likelihood function that summarizes the distance between observations (empirical bivariate probability val-
ues) and model simulations (copula predicted bivariate probability values) into a single scalar.

2.4. Markov Chain Monte Carlo Simulation
Markov Chain Monte Carlo (MCMC) algorithms are a class of statistical methods to sample from high-
dimensional complex distributions [Andrieu and Thoms, 2008]. The equilibrium state of MCMC, if the transi-
tion kernel warrants ergodicity, represents the target distribution. We propose a newly developed hybrid-
evolution MCMC approach that employs adaptive proposal distributions to delineate the posterior parame-
ter region in a Bayesian context. The hybrid-evolution MCMC benefits from an intelligent starting point
selection [Duan et al., 1993] and employs Adaptive Metropolis (AM) [Roberts and Sahu, 1997; Haario et al.,
1999, 2001; Roberts and Rosenthal, 2009], differential evolution (DE) [Storn and Price, 1995, 1997; Ter Braak,
2006; ter Braak and Vrugt, 2008; Vrugt et al., 2009], and snooker update [Gilks et al., 1994; ter Braak and Vrugt,
2008] algorithms to search the feasible space. This hybrid-evolution MCMC sampling is described in
algorithm 1.

In algorithm 1, LN is number of samples drawn from the prior distribution, [pðhÞ], using Latin Hypercube
Sampling (LHS), and N is number of Markov chains (CH). D notifies the dimension of the entire parameter
space, whereas d represents the dimension of the subspace of the parameters randomly selected for update
(Metropolis within Gibbs sampling). T is the total number of iterations, and NAM signifies the number of
chains selected for AM algorithm. c124 are jump factors with c1 randomly selected from ½1:2; 2:2� [ter Braak
and Vrugt, 2008], c252:38=

ffiffiffi
d
p

; c350:1=
ffiffiffi
d
p

[Roberts and Rosenthal, 2009], and c452:38=
ffiffiffiffiffiffi
2d
p

[Ter Braak,
2006]. c4 takes a value of 1, with a probability of 10%, to allow for full exploration of multimodal distribu-
tions [Ter Braak, 2006].

This algorithm starts as a random search of the entire prior space using the LHS algorithm. Drawing insight
from the Shuffled Complex Evolution (SCE) algorithm of Duan et al. [1993], these samples are then randomly
assigned to N complexes, and the sample with highest likelihood value, Lð:j:Þ, is selected as the starting
point for a Markov chain. We call this step ‘‘intelligent prior sampling’’ since it starts chains from points with
highest chance of success and improves the overall acceptance rate. This approach, unlike SCE, randomly
assigns samples to different complexes to enable starting points from different regions of attraction and
avoid degeneration. To diversify the jumping possibilities, the hybrid-evolution MCMC algorithm then
employs snooker direction update with 10% probability and parallel direction update with 90% probability.
For the parallel direction update, we even further diversify the jumping algorithm by allowing NAM chains to
use the AM kernel, and the remainder of the N chains to use DE for sampling. We select N52D following Ter
Braak [2006]. It is particularly useful to employ only a few chains (we used one) with AM sampling and let
the rest of the chains follow DE update. AM approach diversifies the jump direction, and therefore enhances
the search in the early stages of MCMC. However, DE shows a higher potential in converging to the target
distribution. Since AM uses an adaptive covariance matrix, Rd , based on the last 50% samples of the Markov
chains, the proposed hybrid-evolution MCMC benefits from a more powerful search in the early stages of
the algorithm. As the algorithm progresses, samples drawn from DE will dominate the scale and orientation
of the covariance matrix, Rd , and AM also shows similar behavior to DE. The Metropolis ratio is used to
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accept/reject proposal samples, and a Gelman-Rubin R̂ diagnostic is then used to monitor the convergence
of the chains [Gelman and Rubin, 1992].

2.5. Goodness of Fit Measures
In this study, we use several goodness of fit measures to evaluate the performance of different copula mod-
els, including likelihood value, AIC, BIC, RMSE, and NSE. Likelihood value is calculated through equation (6).
A parameter set that provides the maximum likelihood minimizes the residuals between model simulations
and observations. It therefore provides, in this sense, the best fit to the observed data.

Higher model complexity (more degrees of freedom) provides the advantage of greater model flexibility
and hence usually results in a better fit to the observed data. However, this might stimulate overcondition-
ing of the model. AIC, in contrast to the ad hoc likelihood value, takes into account both complexity of the

Algorithm 1: Hybrid-evolution MCMC

1: Intelligent prior sampling: do:

2: Draw LN (� N) samples from prior (pðhÞ) using Latin Hypercube Sampling (LHS)

3: Randomly assign the LHS samples to N complexes

4: Select the best sample in each complex as starting point of a Markov chain (CH)

5: end do

6: for t52 : T do

7: for i51 : N do

8: Snooker update: With a 10% probability do:

9: Draw 3 samples, r123, from parameter space f1 : Dgnfig

10: Find the update direction Z5CHi2CHr1

11: Project CHr2 and CHr3 onto Z to get Zp1 and Zp2

12: Create proposal CH�5CHi1c1ðZp2 2Zp1Þ

13: Compute Metropolis ratio MR5
LðCH�ÞjjCH�2CHr1 jj

D21

LðCHiÞjjCHi2CHr1 jj
D21

14: end do

15: Adaptive Metropolis and differential evolution update: With a 90% probability do:

16: Randomly select d dimensions from D-dimensional parameter space to update (within Gibbs
sampling)

17: if i � NAM then

18: Create proposal CH�ðdÞ5CHiðdÞ1ð12bÞN 0d; c2
2 RdÞ1b N 0d ; c2

3 IdÞ
��

19: else

20: Create proposal CH�ðdÞ5CHiðdÞ1c4 CHr2ðdÞ2CHr1ðdÞ
� �

1e

21: end if

22: Compute Metropolis ratio MR5
LðCH�Þ
LðCHiÞ

23: end do

24: Accept proposal, CH� , with probability max ðMR; 1Þ, and update current chain, CHi

25: end for

26: end for

27: Check for Gelman-Rubin R̂ convergence diagnostic
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model and minimization of error residuals and provides a more robust measure of quality of model predic-
tions. AIC avoids the problem of overconditioning by adding a penalty term based on the number of
parameters. AIC is formulated as [Akaike, 1974, 1998; Aho et al., 2014]

AIC52D22‘; (11)

in which D is the number of parameters of the statistical model and ‘ is the log-likelihood value of the best
parameter set (equation (7)). This equation can be simplified to

AIC52D1n ln

Xn

i51

~y i2yiðhÞ½ �2

n

8><
>:

9>=
>;22CS;

(12)

given the Gaussian assumption of error residuals, ~r25

Pn

i51
~y i 2yiðhÞ½ �2

n

� �
, and a constant CS. A lower AIC value

associates with a better model fit.

Similar to AIC, BIC is presented as [Schwarz et al., 1978]

BIC5Dln n22‘; (13)

which similarly simplifies to

BIC5Dln n1nln

Xn

i51

~y i2yiðhÞ½ �2

n

8><
>:

9>=
>;22CS;

(14)

if residuals are independent and identically distributed following a Gaussian distribution centered around
zero. Similar to AIC, a lower BIC value associates with a better model fit.

NSE and RMSE are also two widely used measures of goodness of fit, which only focus on minimization of
residuals,

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

~y i2yiðhÞ½ �2

n

vuuut
; (15)

NSE512

Xn

i51

~y i2yiðhÞ½ �2

Xn

i51

~y i2
�~y i

� �2
: (16)

A perfect model fit is associated with RMSE 5 0, RMSE 2 ½0;1Þ, and NSE 5 1, NSE 2 ð21; 1�. All these met-
rics evaluate, in different ways, the performance of copulas in terms of how close modeled bivariate proba-
bilities (Y) are to their empirical observed counterparts (~Y). Although number of copula parameters (model
complexity) impacts some of the evaluation metrics, parameter ranges have zero impact on them.

2.6. Multivariate Copula Analysis Toolbox
We now present the Multivariate Copula Analysis Toolbox (MvCAT) that includes 26 different copula families
(Table 1) and optimization methods. Figure 1 shows the Graphical User Interface (GUI) of MvCAT, as well as
its inputs, and sample outputs. Users can conveniently browse their input data and select any set of desired
copula families for the analysis.

Next step is to select either local optimization or MCMC. The local optimization algorithm, included in this
package, uses a gradient-based ‘‘interior-point’’ optimization algorithm [Byrd et al., 2000; Waltz et al., 2006],
which estimates Hessian by a dense quasi-Newton approximation. This algorithm finds the best solution by
searching the interior of feasible space. Interior-point method is selected in this study since our parameter
space is conditioned (due to feasible parameter ranges), and faster methods such as simplex are not partic-
ularly amenable to conditional problems. For each copula estimation, we repeat the search 30 times from
different random starting points to minimize the probability of getting trapped in a local minimum. This,
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however, cannot guarantee finding the global optimum. Conversely, the MCMC algorithm benefit from mul-
tiple starting points in a single run. Multiple parallel chains communicate on the fly to adapt the scale and
orientation of the search. The proposed algorithm is capable of searching multiple regions of attraction,
and not only finds an estimate of the global optimum but also approximates the posterior distribution of
parameters. Local optimization methods benefit from an efficient and swift search, with the trade-off of sus-
ceptibility to finding a local optimum. MCMC algorithm is computationally extensive compared to the local
optimization algorithms, but is superior in that it guarantees finding an estimate of the global optimum and
characterizes the underlying uncertainty.

MvCAT automatically saves all the results in a folder entitled ‘‘Results,’’ which includes a summary report,
posterior parameter distribution plots (if MCMC is selected), modeled probability isoline plots, as well as a
file, with ‘‘.mat’’ extension, that contains all the variables from MATLAB workspace. A summary report details
the ranking of different copula families based on the three criteria of goodness of fit, namely, (1) likelihood,
(2) AIC, and (3) BIC. It will also report the parameter values and their 95% uncertainty range, for each
selected copula family, as well as associated NSE and RMSE values. Finally, a warning section will draw user’s
attention to potential concerns. The MvCAT’s GUI will also report, on the screen, the five best copula fami-
lies. If user is interested in the uncertainty analysis of the copulas, a further postprocessing on the MCMC
samples is required.

3. Illustrative Case Studies and Results

3.1. Example 1: Drought Analysis
In this section, we first focus our attention on drought analysis of Del Norte county in northern California
with an emphasis on the uncertainty quantification of the employed copula framework. Droughts are gen-
erally categorized into four major classes: (1) meteorological (lack of precipitation), (2) agricultural (lack of
soil moisture), (3) hydrological (lack of surface or ground water resources), and (4) socioeconomical (lack of

Figure 1. MvCAT: Multivariate Copula Analysis Toolbox.
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commodities) [Hao and AghaKouchak, 2013; Heim, 2002]. One of the most commonly used indices to char-
acterize drought is the Standardized Precipitation Index (SPI) [McKee et al., 1993; Hayes et al., 2011; Mo,
2011; Shukla and Wood, 2008; Svoboda et al., 2002]. SPI is simple to compute and interpret and only consid-
ers precipitation in the analysis. However, droughts usually involve multiple hydrological variables, such as
precipitation, soil moisture, water deficit, evaporative demand, etc. A more robust approach to analyze
droughts necessitates application of joint distribution of multiple hydrological variables [Dracup et al.,
1980]. This stimulated the development and application of several joint drought indices [Keyantash and
Dracup, 2004; Kao and Govindaraju, 2010; Vicente-Serrano et al., 2010].

One such approach is to employ a multivariate, multi-index drought analysis framework by combining the
drought information from precipitation and soil moisture through their joint distribution [Hao and AghaKou-
chak, 2013]. We follow this framework, and use MvCAT to construct the joint probability distribution of pre-
cipitation (mm/d) and soil moisture (mm) anomalies in Del Norte county in northern California. We
empirically estimate the marginal distribution of each hydrological variable and construct the joint distribu-
tion of precipitation and soil moisture anomalies using the 26 copulas of Table 1. Precipitation and soil
moisture data are obtained from the Climate Prediction Center of the National Weather Service available at
http://www.cpc.ncep.noaa.gov/. These variables are available from 1948 to 2015, and we analyzed them at
monthly and yearly scales. To scrutinize the impact of length of data on the dependence structure and the
underlying modeling uncertainty, we used a subset of recent 34 years (1982–2015) of annual data, in addi-
tion to the original 68 years (1948–2015) of record. In other words, for this study we used 34 (annual), 68
(annual), and 816 (monthly) observation pairs of data to constrain the parameters of different copula fami-
lies using local optimization and MCMC.

Figure 2 shows the dependence structure between precipitation and soil moisture anomalies using 68 years
of monthly (Figure 2a), 68 years of annual (Figure 2b), and 34 years of annual (Figure 2c) observed data.
What is most notable in this figure is the asymmetric and skewed dependence structure of the monthly
data (Figure 2a). The probability isolines derived with the Tawn copula are visibly skewed to the top left cor-
ner (low probability of precipitation and high probability of soil moisture). This behavior, however, is not
replicated in the annual data. It is worth noting that a visual inspection of the 26 copulas fitted to the
monthly data shows that only the Tawn and Marshall-Olkin copulas are capable of characterizing the asym-
metric dependence structure of this data set. Neither is among the commonly used copulas in the hydro-
logical literature. The Tawn copula provides a very good fit to the data with a NSE 5 0.9988 (NSE 5 1 is
associated with a perfect fit) and is selected as the best copula according to AIC, BIC, maximum likelihood,
and other residual-based metrics. Indeed, Tawn copula is a specific version of a class of copula, namely,
Khoudraji’s device copula [Khoudraji, 1996], designed to generate asymmetric copulas [Frees and Valdez,
1998],

Figure 2. Dependence structure of precipitation and soil moisture anomaly for Del Norte county in northern California, USA. Both precipitation (x axis) and soil moisture (y axis) are
presented in probability space. Red lines present the copula isolines and blue dots show observed data. Tawn copula is used to model the dependence of monthly precipitation and soil
moisture anomalies between 1948 and 2015 (plot: a), whereas BB1 copula was selected for the annual scale of this data in the period of 1948–2015 (plot: b) and Burr copula was used
for annual data in the period of 1982–2015 (plot: c).
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Cj;kðu; vÞ5u12jv12kCðuj; vkÞ; 0 � j; k � 1; (17)

in which C is an exchangeable bivariate copula and form the limiting case of the nonexchangeable bivariate
copula Cj;k . If C is selected to be Gumbel, equation (17) simplifies to the closed-form formula of Tawn cop-
ula [Nikoloulopoulos and Karlis, 2008].

It is also notable that three different copula families are selected for the three scenarios of this study (68
years monthly, 68 years annual, and 34 years annual data), with different model complexities (Tawn: three
parameters, BB1: two parameters, and Burr: one parameter). Indeed, a higher length of data is more desir-
able for constraining copula parameters. Bear in mind that this does not imply that one should necessarily
use a more complex copula family (with higher number of parameters) when longer data is available.

The estimation uncertainties, however, are not yet discussed. We use Bayesian analysis with MCMC simula-
tion to find the posterior parameter distributions, and translate them to probability isoline uncertainties.
Figure 3a presents uncertainty ranges of probability isolines associated with the posterior parameters of the
Tawn copula for the monthly precipitation and soil moisture anomalies. It is visible that the uncertainty
ranges are tightly constrained for this scenario. This is due to the presence of enough information in the rel-
atively long record of precipitation and soil moisture observation to constrain the copula parameters. How-
ever, if we use a shorter set of 86 data points (annual), the uncertainty ranges become wider (Figure 3b).
Such a large range of uncertainty in the probability isolines is then translated to the drought indices such as
Multivariate Standardized Drought Index (MSDI), rendering the analysis (e.g., drought classification) more
uncertain. Figure 3c shows the uncertainty ranges of the probability isolines due to parameter uncertainty
for the third scenario with 34 years of annual data (1982–2015). This scenario shows a considerably wider
uncertainty ranges compared to the others. Such behavior points to the insufficiency of the data set to con-
strain the parameter(s) of the copula model. Note that Tawn, BB1, and Burr copulas are selected based on
their performances for scenarios A, B, and C, respectively. If other copula families are to be employed, the
uncertainty ranges will only widen.

It is worth noting that the uncertainty range of probability isolines in scenario C (34 years of annual data) is
so wide that it can encapsulate the best prediction of most of the copula families studied herein. This high-
lights the importance of uncertainty analysis of copula applications, given most studies in hydrology and cli-
matology only include limited lengths of data. MvCAT allows users to efficiently evaluate the uncertainty of
the parameter estimates and the best choices of copulas relative to their length of record.

3.2. Example 2: Frequency Analysis
In this example, we use MvCAT to perform multivariate frequency analysis and characterize the uncertain-
ties in flood return periods. We use flood peak [Q (m3=s)] and volume [V (m3)] data from the Saguenay River

Figure 3. Underlying uncertainty in the dependence structure of precipitation and soil moisture anomaly for Del Norte county in northern California, USA. Both precipitation (x axis) and
soil moisture (y axis) are presented in probability space. Uncertainty ranges of copula isolines are shown with red and observed data are presented with blue dots. The uncertainty ranges
are only due to the parameter uncertainty impacts derived in a Bayesian analysis. Tawn copula is used to model the dependence of monthly precipitation and soil moisture anomalies
between 1948 and 2015 (plot: a), whereas BB1 copula was selected for the annual scale of this data in the period of 1948–2015 (plot: b) and Burr copula was used for annual data in the
period of 1982–2015 (plot: c).
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in Quebec, Canada, for the period of 1963–1995 [Yue et al., 1999; Chebana and Ouarda, 2011; Zhang and
Singh, 2007; AghaKouchak, 2014]. This data set, including 33 pairs of annual flood peak and volume data, is
extracted from daily streamflow data. Marginal distribution of each variable is estimated empirically, and
copula families of Table 1 are calibrated against the empirical joint probabilities to construct the joint den-
sity functions, and model the dependence structure between flood peaks and volumes. The joint return
period (RP) is then estimated as [AghaKouchak, 2014]

RP5
1

PðQ � qp ; V � vpÞ
5

1
12Cðu; vÞ ; (18)

in which the flood peak (Q), or volume (V), or both exceed a prespecified threshold value (qp; vp). As men-
tioned in the previous example, there are several copula families that can be employed, and researchers
need to find the copula family that best fits the purpose. Figure 4 shows different copula families can return
different dependence structures, keeping in mind that all these four copula families (Gaussian, Linear-
Spearman, Raftery, and Cubic) model a common dependence structure in the flood peak and volume of the
Saguenay River in Quebec, Canada. They are dissimilar in form, while being quite similar in the performance
metric of RMSE. Indeed, Gaussian [RMSE 5 0.1000], Raftery [RMSE 5 0.0970], and Linear-Spearman copulas
[RMSE 5 0.1079] can be considered identically good in terms of RMSE, whereas Cubic copula
[RMSE 5 0.3621] is inferior to the others. This highlights the importance of choice of copula, and more

Figure 4. Dependence structure of flood peak and volume of the Saguenay River in Quebec, Canada. Both flood peak (x axis) and flood
volume (y axis) are presented in probability space. Red lines present the copula isolines and blue dots show observed data. (a) Gaussian,
(b) Linear-Spearman, (c) Raftery, and (d) Cubic copula families are used to explain the bivariate dependence of this data.
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importantly quantifying the underlying copula modeling uncertainties. Uncertainty quantification is specifi-
cally more imperative in cases that lack the sufficient constraining information in their observation data.

We now turn our attention back to the uncertainties of the copula modeling and plot the posterior parame-
ter distributions of a set of five representative copula families (Figure 5). Posterior parameters of Gaussian,
Frank, and Gumbel copulas (Figures 5a–5c) are well constrained. More importantly, the copula parameters
derived by the local optimization algorithm (red asterisks on top of each plot) coincide with the mode of
the distribution (most likely parameter, shown with blue cross on the bottom of each plot) derived from the
MCMC simulation. However, this does not hold for all copula families (Figures 5d–5f). The inferred parame-
ters of Nelsen and Marshall-Olkin copulas from the local optimization algorithm diverge significantly from
their counterparts from the MCMC simulation. A closer look at the results of the two approaches reveals
that MCMC yields in a reasonable retrieval of the target values. The best parameter value of MCMC simula-
tion returns an RMSE value of 0.1138 and 0.1239 for the Nelsen and Marshall-Olkin copulas, respectively,
whereas the local optimization algorithm yields RMSE values of 0.3154 and 0.3459 for these copulas. In
more details, six (Gaussian, t, Clayton, Gumbel, Nelsen, and Marshall-Olkin) of the 26 copulas studied herein
show an inferior fit (according to RMSE) with local optimization compared to the MCMC results. Keeping in
mind that we repeat local optimization with 30 different starting points for each copula family, this behavior
is rather disappointing. This raises the question of whether the local optimization algorithms, widely used in
the literature, provide a robust and reliable solution to the dependence analysis problem or not. We argue
that it is important to employ global optimization algorithms and/or MCMC framework that benefit from
multiple start points, such as the one used in MvCAT, for copula inference.

We now proceed with plotting the histogram of the posterior parameter distributions of four other copulas,
namely, AMH, FGM, Gumbel-Barnett, and Tawn (Figure 6). An interesting observation in the AMH, FGM, and
Gumbel-Barnett copulas (Figures 6a–6c) is that their parameter distributions merge to the parameter
bounds, with the maximum likelihood (best) parameter placed on the boundary. This implies that the

Figure 5. Posterior distribution of (a) Gaussian, (b) Frank, (c) Gumbel, (d) Nelsen, and (e–f) Marshall-Olkin copulas derived by the MCMC simulation within a Bayesian framework. Red
asterisks on top of each plot show the copula parameter value derived by the local optimization approach, whereas the blue bins are the MCMC-derived parameters and blue cross
shows the maximum likelihood parameter of the MCMC.
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optimization algorithm is trying to improve the fit by going outside the bound, which is forcefully not per-
mitted. One implication might be that the choice of such copulas for this data is not proper. A closer look

reveals the Gumbel-Barnett parameter
merges to zero, which corresponds to
independence. Indeed, the independence
and Gumbel-Barnett copulas return a sim-
ilar fit to the data with an RMSE of 0.3845.
A rather interesting behavior is observed
in the posterior distributions of the Tawn
copula parameters (Figures 6d–6f). It is
noticeable that the third parameter of the
Tawn copula has almost a uniform mar-
ginal distribution, which suggests the
information in the observed data (34 data
points) is not enough to constrain three
parameters of the Tawn copula. As for the
first and second parameters of the Tawn
copula (h1 and h2), the MCMC-derived
posterior distributions are nicely con-
strained, and their mode coincide with
the parameter value inferred by the local
optimization (red asterisks).

Finally, we will explore the uncertainty
ranges of the return periods based on flood
peak and volume information (Figure 7). To

Figure 6. Posterior distribution of (a) AMH, (b) FGM, (c) Gumbel-Barnett, and (d–f) Tawn copula parameters derived by the MCMC simulation within a Bayesian framework. Red asterisks
on top of each plot show the copula parameter value derived by the local optimization approach, whereas the blue bins are the MCMC-derived parameters and blue cross shows the
maximum likelihood parameter of the MCMC.

Figure 7. Underlying uncertainty in the dependence structure of flood peak
and volume in the Saguenay River in Quebec, Canada. The uncertainty ranges
(red) are only due to the BB1 copula parameter uncertainty impacts derived
in a Bayesian analysis.
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estimate these return period levels, we use equation (18) which in turn depends on the copula analysis of flood
peak and volume. MvCAT returns BB1 as the best copula family (in terms of all performance criteria including
AIC, BIC, and maximum likelihood), and we use that to model the dependence structure between flood peak
and volume. The modeled dependence structure and equation (18) is then used to estimate the uncertainties of
different return period levels in Figure 7. This figure shows a relatively large uncertainty in each return period
level. For example, for a flood event with a peak value of 2300 (m3=s) and a return period of 25 years, the flood
volume can lie in the range of approximately 82,000–85,500 (m3). An uncertainty of approximately 3500 (m3)
for a return period of 25 years is indeed significant and cannot be neglected. MvCAT offers the opportunity to
provide not only the dependence structure but also a measure of parameter uncertainty.

4. Summary and Discussion

Hydrological variables are interconnected, and understanding their dependencies is often fundamental to
reliable modeling, prediction, and risk assessment. Copulas have been widely used for modeling and under-
standing the relationship between two or more variables. Copulas have been used in a wide range of appli-
cations including multivariate frequency analysis, multi-index drought assessment, extreme value analysis,
and coastal flood risk assessment.

While there are a large number of copulas in the literature, only few have been widely used in the hydrolog-
ical and climatological literature. Furthermore, little attention has been paid to the underlying uncertainties
associated with fitting copulas to data sets with limited length (limited information). In this paper, we pre-
sent the Multivariate Copula Analysis Toolbox (MvCAT). This toolbox has 26 copulas including a number of
copulas that have not been widely used in the field. MvCAT includes not only the commonly used local
optimization method, but also an advanced MCMC framework. The latter employs MCMC simulation within
a Bayesian framework to estimate copula parameters and their underlying uncertainties. The MCMC compo-
nent improves the parameter estimation and offers information on the posterior distribution of parameter
values. The posterior distribution can then provide uncertainty information on the fitted copula probability
isolines.

MvCAT ranks the performance of selected copulas based on maximum likelihood, Akaike Information Crite-
rion (AIC), and Bayesian Information Criterion (BIC). The summary report provides detailed information on
the best parameter set, and 95% uncertainty ranges of parameters of each copula, as well as its best perfor-
mance in terms of root mean square error (RMSE) and Nash-Sutcliff efficiency (NSE) criteria. We used MvCAT
in two example applications: (a) multi-index drought assessment using joint precipitation-soil moisture
anomalies in Del Norte county, California, USA and (b) flood peak and volume frequency analysis in the Sag-
uenay River in Quebec, Canada. Most important conclusions of this study are:

1. Bayesian analysis can be used to estimate the posterior distribution of copula parameters and the under-
lying uncertainties in copula modeling. Our analysis has shown there is a large uncertainty in the simula-
tion of probability isolines, when limited information is available in constraining data (see Figures 3 and
7). Simulation of probability isolines refer to creating them from the copula model, given the derived
posterior parameter sets.

2. In hydrological and climatological applications the length of record is typically short (e.g., a 30 year clima-
tology). This study shows that length of record significantly affects the uncertainty of results (see Figure
3). Uncertainty quantification of copula applications has not received the attention it deserves. MvCAT
offers uncertainty bounds for the copula probability isolines. This information is particularly useful in mul-
tivariate frequency analysis studies.

3. Local optimization algorithms, widely used in the literature to estimate the copula parameter values,
may get trapped in local optima and lead to biased results (see Figure 5). MCMC simulation, on the con-
trary, starts its search for the posterior region of interest from multiple random points and is designed to
efficiently explore the entire feasible space. The proposed hybrid-evolution MCMC algorithm will not
only find a good estimate of the global optimum but also provide an approximation of the underlying
uncertainties in a Bayesian framework.

4. There are several copula families that can describe different probabilistic properties (see Table 1), but
only a limited number are used in the hydrological literature (mainly, Gaussian, t-, Clayton, Frank, and
Gumbel). Some variables exhibit asymmetric skewed dependence structures that cannot be described
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by the commonly used copulas (see Figure 3). MvCAT includes a wide range of families with different
degrees of freedom that can capture both symmetric and asymmetric dependencies.

This paper presents the theoretical background of MvCAT. The graphical user interface (GUI) of this program
enables users to conveniently browse the input data and select the desired copula family (all or a subset of
the models). In this study, we have focused our attention to mainly model parameter uncertainties. Efforts
are underway for a more comprehensive analysis of different uncertainty sources (forcing data, model struc-
tural and calibration data) which could be beneficial to the community. MvCAT is freely available to public,
and the interested users can download the source codes from http://amir.eng.uci.edu/software.php and
http://coen.boisestate.edu/hydroclimate/softwares/.
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