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Defining droughts based on a single variable/index (e.g., precipitation, soil moisture, or runoff) may not 
be sufficient for reliable risk assessment and decision-making. In this paper, a multivariate, multi- index 
drought- modeling approach is proposed using the concept of copulas. The proposed model, named Mul- 
tivariate Standardized Drought Index (MSDI), probabilist ically combines the Standardized Precipitation 
Index (SPI) and the Standardized Soil Moisture Index (SSI) for drought characterization. In other words,
MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of
drought. In this study, the proposed MSDI is utilized to characterize the drought conditions over several 
Climate Divisions in California and North Carolina. The MSDI-based drought analyses are then compared 
with SPI and SSI. The results reveal that MSDI indicates the drought onset and termination based on the 
combination of SPI and SSI, with onset being dominated by SPI and drought persistence being more sim- 
ilar to SSI behavior. Overall, the proposed MSDI is shown to be a reasonable model for combining multiple 
indices probabilistically.

� 2013 Elsevier Ltd. All rights reserved.
1. Introductio n

Droughts are common climatic extremes that often spread 
across large spatial and time scales [27]. Historically, droughts af- 
fect more people across the globe than any other climate extremes 
[45]. The economic damage of droughts across the United States on
average is estimated as $6–8 billion annually [12]; hence, monitor- 
ing and understand ing the effects of droughts on water resource 
systems are essential to hazard preparedness and sustainable 
developmen t.

The drought phenomeno n is usually described using drought 
detection and monitoring indices. Typically, droughts are catego- 
rized into four major classes: meteorological , agricultural, hydro- 
logical, and socio-economi cal [18]. Meteorologica l drought is
identified by lack of precipitation as the main indicator, while agri- 
cultural drought is related to the total soil moisture deficit. Hydro- 
logical drought, on the other hand, is characterized by a shortage of
streamflow, as well as ground-water supplies. Several indices have 
been develope d for drought monitoring based on different vari- 
ables, such as precipitatio n, soil moisture, and runoff [24]. For 
example, the Palmer drought severity index (PDSI, [29]), derived 
from precipitation and temperature , has been widely used for 
drought characterization [8,7,35]. Mckee et al. [23] proposed the 
Standardize d Precipitati on Index (SPI) as a drought indicator for 
meteorol ogical drought monitoring and analysis, which is recom- 
mended by the World Meteorolog ical Organization (WMO) as a
standard drought-mo nitoring index [17]. Given its simplicity and 
temporal flexibility, the SPI has been commonl y used in numerous 
publications [26,38,41]. Other drought indices, such as the Crop 
Moisture Index, the Vegetation Drought Response Index (VegDRI),
or the Standardized Precipitation Evapotransp iration Index (SPEI),
have also been develope d for drought monitoring [6,18,30,43].

A variety of studies have been conducted to evaluate the suit- 
ability of drought indices for different applications. Guttman [16]
compare d the PDSI and SPI and reported that the PDSI varied from 
site to site throughout the US with complex structure and long 
memory, while the SPI did not vary from site to site and was an
easily interpreted, simple moving average process. Keyantash and 
Dracup [21] evaluated the most prominent indices for different 
forms of drought based on a weighted set of six evaluation criteria 
(e.g., robustness, tractability ). Their results showed that rainfall 
deciles (followed by SPI with very close scores), total water deficit,
and computed soil moisture were the overall superior drought 
indices for the meteorologi cal, hydrological, and agricultural 
droughts , respectively . For monitoring meteorological drought,
[31] suggested that the SPI and deciles (percentiles) were the most 
suitable indices.

Drought analyses based on a single variable (or indicator) may 
not be sufficient because drought phenomena are related to multi- 
ple variables (e.g., precipita tion, runoff, and soil moisture). A mete- 
orologica l drought (deficit in precipitation) may not lead to an
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agricultural drought (deficit in soil moisture), for example, in trop- 
ical regions where the average precipita tion is relatively high. A
complete analysis of drought events necessita tes joint analyses of
rainfall, runoff, and soil moisture conditions [9]. To characterize 
the overall drought condition, several joint drought indices have 
been proposed . Keyantash and Dracup [22] proposed an aggregat e
joint index that considers all physical forms of drought (meteoro-
logical, hydrologi cal, and agricultu ral) through the selection of
drought variables that are related to each drought type. Kao and 
Govindaraju [20] developed a copula-based joint index with Ken- 
dall distribution to characterize drought from precipitatio n and 
streamflow. Vicente-Serrano et al. [43] proposed the Standard ized 
Precipitation Evapotransp iration Index based on precipitation and 
temperature data that combine multi-sca lar characters with the 
capacity to include the effects of temperat ure variability on
drought assessment.

In this paper, a multivariate, multi-index drought-mode ling ap- 
proach is proposed to combine the drought information from pre- 
cipitation and soil moisture using the joint distribution function of
the two variables. The proposed multi-index drought modeling 
framework is basically the extended version of the commonly used 
Standardize d Precipitation Index (SPI), developed by [23], that 
incorporate s soil moisture in addition to precipitatio n. Similar to
the SPI, the suggested multi-index drought model is capable of
characterizi ng drought conditions at different time scales. In this 
study, the proposed multi-index approach is utilized to character- 
ize the drought conditions over several Climate Divisions in Cali- 
fornia and North Carolina. The results are then compared with 
SPI and SSI.

This paper is organized into five sections. The methodol ogy is
described in Section 2, while Section 3 provides a synthetic exam- 
ple and provides a discussion on how to interpret the suggested 
multivariate multi-index drought model. The application of the 
proposed framework is demonstrated in Section 4, followed by
the summary and conclusion in Section 5.
2. Methodology 

Motivate d by the commonly used SPI develope d by [23], a mul- 
ti-index model can be developed through constructing the joint 
distribution function of two or more univariat e drought variables 
(or indices). In this study, the Multivariate Standard ized Drought 
Index (MSDI) is proposed by extending the univariate SPI through 
the joint distribution of precipitatio n and soil moisture for overall 
meteorologi cal and agricultural drought characterizati on.

Copulas are functions that can be used to derive the joint distri- 
bution of two or more variables, regardless of their original mar- 
ginal distributions. Assumin g precipita tion and soil moisture as
random variables X and Y, respectively , the joint distribution with 
the cumulative joint probability p can be expresse d with a copula C
as [28,40]:

PðX 6 x;Y 6 yÞ ¼ C½FðXÞ;GðYÞ� ¼ p ð1Þ

where C is the copula, and F(X) and G(Y) are the marginal cumula- 
tive distribution functions of random variable s X and Y, respec- 
tively. The copula C offers the flexibility to construc t the joint 
distribution of random variable s in terms of their marginal distribu- 
tions. The application of copulas in modeling (nonlinear) depen- 
dence structures of multiv ariate data has becom e popular in
hydrolog ical and climatologic al studies, such as multiv ariate fre- 
quency analysis , risk assessment, drought modeling, and geostatis- 
tical interpolati on [1,2,5,11,14,32,34,36] .

There are a wide variety of copula families that have been 
developed/u sed to model different dependence structures of ran- 
dom variables [3,4,33]. For example, the Frank copula offers a sym- 
metric dependence structure, while Gumbel and Clayton copulas 
exhibit asymmetric dependence structures [33,42]. The Frank cop- 
ula, for example, can be expresse d as [28,33]:

Cðu; vÞ ¼ �1
h

ln 1þ e�hu � 1ð Þ e�hv � 1ð Þ
e�h � 1

� �
ð2Þ

where h is the parameter , and u and v are the marginal cumulative 
probabil ities of precipit ation and soil moisture, respective ly. The 
paramete r h can be estima ted from Kendall’s rank correlation s
[13]:

s ¼ 1þ 4½DðhÞ � 1�=h ð3Þ

where D(h) is expressed as:

DðhÞ ¼ 1
h

Z h

0

t
expðtÞ � 1

dt ð4Þ

where t is the integration variable. The choice of copula family is
discussed in Section 4. For detailed descriptions of different copula 
functions the interested reader is referred to [19,28].

From the cumulative joint probability p shown in Equation (1),
the Multivar iate Standard ized Drought Index (MSDI) can then be
defined as:

MSDI ¼ u�1ðpÞ ð5Þ

where u is the standard normal distribution function. Equation (5)
transfor ms the joint probability to the MSDI that is located in the 
same space as the original SPI and allows cross-comp arison of dif- 
ferent drought indices. The procedu re to develop the SPI can also 
be applied to other variable s such as soil moisture and runoff 
[23,25,3 7]. In this study, we use the Standard ized Soil Moisture In- 
dex (SSI) for cross-com parison. The proposed MSDI incorporat es the 
overall drought conditio ns reflected from precipitat ion and soil 
moisture. Similar to the original SPI, a sequenc e of negative MSDIs 
indicate s that the climate conditio n is dry (drought), while a se- 
quence of positive MSDIs represe nts a wet climate condition . MSDI 
near zero refers to normal climate conditions.

Kao and Govindar aju [20] first described the concept of using 
the joint cumulative probability as the overall drought indicator 
and proposed the joint deficit index based on the Kendall distribu- 
tion. In this study, we use the joint cumulative probability to con- 
struct the MSDI as an extension to the original SPI developed by
McKee et al. [23]. Therefore, the proposed MSDI bears a close 
resemblanc e to the SPI based on the fact that it can be used to
monitor droughts at different time scales (e.g., 1-, 3-, 6-month).

3. Interpre tation of MSDI 

In this section, we demonstrat e the propertie s of MSDI through 
a numerical example. In Section 4, the process of selecting a copula 
family for deriving MSDI is discussed in detail. For now, assume 
that Frank copula is selected to construct the joint distribution of
precipita tion and soil moisture and to derive the MSDI.

The joint cumulative probability of precipita tion and soil mois- 
ture given in Eq. (1) based on the Frank copula is displayed in Fig. 1.
In this graph, 0.2 (or 20th percentile) of precipitation and soil mois- 
ture, for example, correspond s to SPI and SSI equal to �0.8. The 
MSDI contours for different combinati ons of precipitation and soil 
moisture percentiles are also shown in Fig. 1. Assume a certain 
drought threshold of 20th percentile precipitatio n and soil mois- 
ture (see lines L1 and L2 in Fig. 1). Consequentl y, four areas, A1–
A4, are defined in the probability space by lines L1, L2, and the 
axes. The four areas (A1–A4) define different combinations of
drought conditions indicated by precipitatio n and soil moisture.
For a better illustration, the four points representing the four com- 
binations of precipitatio n and soil moisture with different proba- 



Fig. 1. A numerical example to describe the properties of MSDI.
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bilities (or percentiles ) are plotted in Fig. 1: P1 (0.15,0.25), P2
(0.25,0.25), P3 (0.25,0.15), and P4 (0.15,0.15), which fall into areas 
A1–A4, respectively . Considering only 20th percentile of precipita- 
tion, points that fall within A1 and A4 are in drought condition.
Similarly, based on 20th percentile of soil moisture only, points 
that fall within areas A3 and A4 are in drought. A close look at
Fig. 1 reveals that A1 corresponds to the condition in which precip- 
itation shows drought, while soil moisture does not (e.g., P1
(0.15,0.25)). On the contrary, A3 refers to the case in which there 
is a deficit in soil moisture, but not precipitatio n (e.g., P3
(0.25,0.15)).

The area between 0.2 MSDI, L1 and L2, is shown as A2 in Fig. 1.
Based on the 0.2-conto ur line of MSDI, all points that fall in
A1 + A2 + A3 + A4 indicate drought, meaning that, for the same 
percentile (e.g., 20th), MSDI constitutes a larger probability space 
below the same percentile. For this reason, MSDI has a higher 
chance of detecting a drought based on the states of two variables 
(here, precipitatio n and soil moisture). Assumin g a certain alarm 
threshold of 0.2, one can see that, for P2 (0.25,0.25) MSDI indicates 
drought because both variables are low, although individua l vari- 
ables are still 0.25 (25th percentile).

Area A4 shown in Fig. 1 corresponds to the condition that both 
the soil moisture and precipitatio n fall below an alarm threshold 
(e.g., P4 (0.15,0.15)). Both SPI and SSI will identify such points as
a drought event, assuming an alarm threshold of 0.2 (20th percen- 
Fig. 2. Locations of the selected Climate Divisions in California and North Carolina.
tile). As shown, P4 not only falls below the 0.20 contour of MSDI, it
might even fall below a smaller value (here, 0.1). This indicates 
that, if both variables fall below an alarm threshold, MSDI will lead 
to a more severe drought condition than either SPI or SSI.
4. Results 

4.1. Data descriptio n

Monthly precipitatio n and soil moisture data are processed to
illustrate the application of the proposed MSDI. Monthly precipita -
tion and soil moisture data for the same period 1932–2009 were 
obtained from the Climate Prediction Center (CPC). The soil mois- 
ture data set is based on a one-layer water-budget soil moisture 
model available for the entire US [10]. As shown in Fig. 2, two Cli- 
mate Divisions (3,5) in California and three Climate Divisions (1, 4,
and 8) in North Carolina are used as case study sites. The Climate 
Divisions represent different climate, different land-use and topo- 
graphica l condition s in the western and eastern United States. In
California, Climate Division 3 is primarily an agricultural area,
whereas Climate Division 5 is an inland mountainou s are. Climate 
Divisions 1, 4, and 8 in North Carolina are mountainous, semi-ur- 
ban, and coastal, respectively .

4.2. Copula-base d joint distribution 

Following the procedure presente d by [23], the standard precip- 
itation index (SPI) and standard soil moisture index (SSI) are de- 
rived using the precipitatio n and soil moisture data sets 
discussed above. In order to investigate the MSDI at different time 
scales (i.e., 3-, 6- and 12-month), SPI and SSI are computed for the 
same duration s and used for cross-com parison.

Three copulas, namely, Clayton, Frank, and Gumbel, are used to
derive the joint probabili ty distribution of precipitation and soil 
moisture. The Cramér–von Mises statistic (Sn) and Kolmogorov–
Smirnov statistic (Tn) are used for goodness -of-fit tests to assess 
the performanc e of different copulas in modeling the dependence 
structure between precipita tion and soil moisture [13,15]. The p-
values of statistics Sn and Tn, based on a run of 5000 samples of
each month for a 3-month duration for Climate Division 3, are 
shown in Table 1. For constructi ng the joint distribution , a copula 
cannot be rejected if the corresponding p-value is equal to or high- 
er than 0.05 (5% significance level). The goodness-of-fit test of the 
copula is performed at a monthly scale in order to be consistent 
with SPI and SSI analyses. The tables indicate that most months 
can be modeled using the Frank and Gumbel copulas, while Clay- 
ton occasionally fits as well (see underlined p-values in Table 1).
When several copula families fit the data, the one with the highest 
p-value is selected for deriving the joint distribution of precipita -
tion and soil moisture.

4.3. Standardized precipitation and soil moisture indices 

The original SPI and SSI at different time durations (i.e., 3-, 6-
and 12-month) are compared for Climate Divisions 3 and 5 dis- 
played in Figs. 3 and 4, respectively. One can see that, while the 
two indices are generally consistent, there are discrepancie s at sev- 
eral time steps between the two indices. In a few time steps, even 
the wet (positive) and dry (negative) signals are different. For 
example, in 1977, the 3-month SPI for Climate Division 3 shows 
a recovery from drought, while the SSI indicates that the drought 
continue s for a few more months (see the top panel in Fig. 3). Such 
discrepan cies could be due to abnormally high rainfall over a very 
short period of time, while most of the month remains dry (SPI > 0
and SSI < 0). Alternatively , a below-average rainfall distribution 



Table 1
p-values for the goodness-of -fit tests Sn and Tn for deriving 3-month MSDI based on precipitation and soil moisture over Climate Division 3 in California (the underlined values for 
each month correspond to the suitable copula family).

Copula p-value 1 2 3 4 5 6 7 8 9 10 11 12

Clayton Sn 0.00 0.02 0.06 0.07 0.16 0.01 0.02 0.01 0.26 0.46 0.07 0.04 

Clayton Tn 0.00 0.04 0.05 0.02 0.46 0.03 0.01 0.02 0.28 0.34 0.07 0.17 

Frank Sn 0.46 0.33 0.40 0.33 0.57 0.42 0.13 0.61 0.80 0.01 0.32 0.84 
Frank Tn 0.64 0.18 0.42 0.62 0.80 0.20 0.32 0.48 0.90 0.02 0.73 0.38 
Gumbel Sn 0.27 0.39 0.23 0.85 0.82 0.35 0.35 0.28 0.95 0.01 0.84 0.41 

Gumbel Tn 0.11 0.26 0.22 0.77 0.82 0.39 0.39 0.25 0.87 0.01 0.89 0.34

Fig. 3. Comparison of 3-, 6-, and 12-month SPI and SSI for Climate Division 3 in California (y-axes show the dimensionless values of SPI and SSI).

Fig. 4. Comparison of 3-, 6- and 12-month SPI and SSI for Climate Division 5 in California (y-axes show the dimensionless values of SPI and SSI).
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Fig. 5. Comparison of 3-, 6- and 12-month MSDI, SPI, and SSI for Climate Division 3 in California (y-axes show the dimensionless values of SPI, SSI and MSDI).
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throughout a month, such that the soil stays wet (SPI < 0 and 
SSI > 0), could lead to opposite signs of SPI and SSI.

It is emphasized that as the drought duration increases (e.g.,
from 3- to 12-month), the differences between the SPI and SSI tend 
to decrease (see Figs. 3 and 4). For example, the 12-month SPI and 
SSI are more consistent compare d to those of the 3-month or 6-
month drought durations. It is worth mentioning that both SPI 
and SSI capture historical drought conditions, such as the California 
drought of 1976–1977. However, the SPI and SSI show different 
levels of severity (the horizontal lines in Figs. 3 and 4 represent
the moderate drought threshold (severity of �0.8) for better com- 
parison). Having different severities indicates that the risk assess- 
ment and return-period estimation using SPI and SSI will lead to
different results. Furthermore, the results demonst rate that the 
estimated drought duration from SPI and SSI often varies consider- 
ably (e.g., 2001–2003 in Fig. 3(bottom) and 1991–1993 in
Fig. 4(bottom)). These differences may lead to different definitions
for drought onset and termination.

4.4. Multivariate Standardi zed Drought Index (MSDI)

We hypothes ize that MSDI can provide a new perspective based 
on the joint probability distribution of precipitatio n and soil mois- 
ture. The 3, 6 and 12-month MSDI (solid line), SPI (dashed line),
and SSI (dotted line) for the Climate Division 3 are plotted in
Fig. 5 (for better visualization, only the results for 1974–1990 are 
shown). As an example, during 1976–1978, the 3-month SPI and 
SSI both show deficits in precipita tion and soil moisture with dif- 
ferent duration s (Fig. 5(top)). The SPI captures the drought earlier 
than the SSI, and shows more variability compared to SSI. On the 
other hand, SSI indicates a longer drought compared to SPI, mean- 
ing it shows the drought persistence more reliably. The MSDI 
exhibits the drought onset similar to the SPI and drought persis- 
tence similar to SSI. The drought duration based on MSDI is similar 
to that of SSI and longer than the duration of the same event based 
on SPI. During this 2-year drought period, precipitatio n shows sig- 
nals of drought recovery in mid-1976 and mid-1977 (see high val- 
ues of SPI). However, the drought termination signals based on
precipita tion are temporary and primarily because of high variabil- 
ity of precipita tion (see SSI which does not show much variabilit y
and shows the persistence of drought for the entire 2-year event).
Therefore, describing droughts based on solely the state of the pre- 
cipitation may be misleading at certain time-steps. Here, MSDI 
captures the drought as early as SPI (�2 month before SSI shows 
the drought onset) and describes the drought developmen t and 
terminat ion based on the state of both precipitation and soil mois- 
ture. Therefore, a temporary change in one variable (e.g., precipita -
tion) does not affect the MSDI.

The above example highlight s an attractive property of MSDI 
which is describing the drought onset and persistence based on
the states of multiple variables. When either precipitatio n or soil 
moisture indicates a drought event, MSDI will also show a drought 
event. Regarding the drought severity, the MSDI generally resem- 
bles the severity of the SPI or SSI whichever is lower. The MSDI will 
lead to even a more severe drought than SPI and SSI when both 
indices show deficits in both precipita tion and soil moisture (e.g.,
during 1976–1978 drought in Fig. 5).

As shown in the 6-month SPI, SSI and MSDI in Fig. 5 (middle),
for the drought that occurred at the end of 1981, the drought onset 
is first captured by the MSDI while neither precipita tion nor soil 
moisture indicate the drought onset. However , both indicators 
are low and show signs of deficit. This is the case when the com- 
bined precipitation and soil moisture fall within the A2 area (see
Fig. 1). For this reason, MSDI can improve earlier detection of
droughts than each individual index. The presented results show 
that MSDI can combine the information from two indices and pro- 
vide one measure of drought based on the states of both precipita- 
tion and soil moisture.

In order to further investigate the proposed methodology , MSDI 
is applied to three other Climate Divisions (1, 4, and 8) in North 
Carolina, which represent different land-use and topograp hical fea- 
tures (Division 1 is mountainou s, 4 is semi-urb an and 8 is coastal 
region) [39]. The 3-month SPI, SSI, and MSDI for the three Climate 
Divisions are shown in Fig. 6. As shown in Fig. 6(top), the onset of
the drought that occurred between 1984 and 1986 in Climate Divi- 
sion 1 is first recognized by the 3-month SPI and MSDI. The SSI 



Fig. 6. Comparison of 3-month MSDI, SPI, and SSI for Climate Division 1, 4, and 8 in North Carolina (y-axes show the dimensionless values of SPI, SSI and MSDI).
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does not capture this drought condition as early as SPI and MSDI.
This is the case when the combinati on of precipitatio n and soil 
moisture falls in the A1 area displayed in Fig. 1. In this case, the 
MSDI, along with the SPI, identifies the drought, while SSI does 
not. As the drought develops, SSI also shows a deficit in soil mois- 
ture, which results in the MSDI showing an even higher severity le- 
vel (or lower joint probability). This is the case where both 
precipitatio n and soil moisture highlight the drought (A4), and as
such, MSDI exhibits an even more severe drought condition than 
SPI and SSI alone. As time evolves, precipita tion returns to a
near-norma l level (above �0.8 thresholds) several months earlier 
than the SSI (and MSDI). This is the case where the combination 
of precipitation and soil moisture lies in the A3 area given in
Fig. 1. As mentioned earlier, MSDI capture all condition s that fall 
in the four areas (A1–A4) highlight ed in Fig. 1. Similar behavior 
can be observed in Climate 4 (the middle panel in Fig. 6) and Cli- 
mate Division 8 (the bottom panel in Fig. 6) during this period.
In summary , MSDI captures the drought onset as early as SPI (or
earlier if both precipitatio n and soil moisture are low) and de- 
scribes the drought persistence similar to SSI.

5. Summary and conclusi ons 

The fundamenta l differenc e between droughts and other cli- 
mate extremes such as floods and hurricanes lies in the fact that 
droughts occur over much longer time spans, and their onsets 
and terminat ions are difficult to identify [44]. While drought 
events are typically defined as periods with a sustained lack of
water, depending on the region, indicator variable, and/or user 
requiremen t, they may be defined differently (e.g., lack of soil 
moisture, ground water, or precipitation). For this reason, provid- 
ing reliable and relevant drought informat ion based on multiple 
indicator or variables is important for overall characterization of
drought.

In this paper, a multivariate, multi-index drought-mode ling ap- 
proach is proposed using the concept of copulas. The proposed 
model, named Multivariate Standardized Drought Index (MSDI),
determines drought onset and termination based on the combina- 
tion of SPI and SSI, with onset time being dominated by SPI and the 
persisten ce of droughts being more similar to SSI behavior. The 
propertie s of the MSDI that can be summarized as follows: (a)
MSDI captures a drought condition indicated from either precipita- 
tion or soil moisture; (b) MSDI describes the drought onset as early 
as SPI, while it shows drought persistence similar to SSI; and (c)
MSDI shows a more severe drought condition when both the pre- 
cipitation and soil moisture exhibit a deficit. Notice that MSDI, sim- 
ilar to univariate SPI and SSI, provides probabili ty of occurrence 
and thus can be used for risk analysis as well.

The proposed framework for creating multi-index drought 
models is rather general, and other indices can be integrated into 
MSDI. In the future, the authors will evaluate the integration of
other indices, such as runoff or ground-water storage, to evaluate 
meteorol ogical, agricultural, and hydrological droughts. The 
authors emphasize that drought informat ion should be based on
multiple sources of informat ion and, for this reason, MSDI is not 
meant to replace SPI and SSI. Instead, we propose that MSDI be
used as an additional source of informat ion based on the joint 
probabili ty of precipitatio n and soil moisture.
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