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ABSTRACT

Accurate and reliable drought monitoring is essential to drought mitigation efforts and reduction of social

vulnerability. A variety of indices, such as the standardized precipitation index (SPI), are used for drought

monitoring based on different indicator variables. Because of the complexity of drought phenomena in their

causation and impact, droughtmonitoring based on a single variable may be insufficient for detecting drought

conditions in a prompt and reliable manner. This study outlines a multivariate, multi-index drought moni-

toring framework, namely, the multivariate standardized drought index (MSDI), for describing droughts

based on the states of precipitation and soil moisture. In this study, the MSDI is evaluated against U.S.

Drought Monitor (USDM) data as well as the commonly used standardized indices for drought monitoring,

including detecting drought onset, persistence, and spatial extent across the continental United States. The

results indicate that MSDI includes attractive properties, such as higher probability of drought detection,

compared to individual precipitation and soil moisture–based drought indices. This study shows that the

MSDI leads to drought information generally consistent with the USDMand provides additional information

and insights into drought monitoring.

1. Introduction

Drought is one of the most damaging natural hazards

and could result in devastating effects to social and

ecological systems. The annual economic damage of

droughts across the continental United States is esti-

mated to be $6–8 billion on average (FEMA 1995). The

2002 widespread drought over large portions of 30 states

resulted in estimated damages–costs of over $10 billion

(Lott and Ross 2006). In 2010, two major droughts, which

occurred in Somalia and Thailand, together affected 8.9

million people (Guha-Sapir 2011). Thus, drought moni-

toring and prediction is of critical importance for risk

assessment and decision making, as well as for taking

prompt and effective actions to avoid–reduce the effects

of droughts.

The development of a comprehensive drought moni-

toring system capable of providing early warning of

a drought’s onset, severity, persistence, and spatial ex-

tent in a timely manner is a critical component in es-

tablishing a national drought policy or strategy (Hayes

et al. 2011). Different drought indices have been de-

veloped and applied for drought monitoring and pre-

diction. The Palmer drought severity index (PDSI;

Palmer 1965) is widely used for drought characterization

(Dai et al. 2004; Dai 2011). The standardized precip-

itation index (SPI) proposed by McKee et al. (1993) is

commonly used for meteorological drought monitoring

and has been adopted as an important monitoring tool

to detect the early emergence of drought (Shukla et al.

2011). The SPI is obtained by transforming the cumu-

lative probability of the precipitation for a particular

time period using the inverse of the standard normal

distribution. In the recent Inter-Regional Workshop on

Indices and Early Warning Systems for Drought, the

SPI is recommended for characterizing meteorological

drought for worldwide use, while no consensus is reached

in the drought indices to characterize agricultural and

hydrological droughts (Hayes et al. 2011). The standard-

ization concept of the SPI can also be applied to other

variables to derive drought indices such as the standard-

ized soil moisture index (SSI; Hao and AghaKouchak

2013) and the standardized runoff index (SRI; Shukla and

Wood 2008) for drought monitoring.

The performance of different variables differs in

detecting the drought onset, persistence, and termina-

tion. A meteorological drought (deficit in precipitation)
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may develop quickly and end abruptly, while the onset

of an agricultural drought (deficit in soil moisture) re-

sponds to a meteorological drought with some time lag

(Entekhabi et al. 1996; Heim 2002). After analyzing the

onset and recovery of droughts over the United States,

Mo (2011) argues that the onset of meteorological

droughts occurred a fewmonths earlier than agricultural

droughts for the same drought event. Meanwhile, soil

moisture plays an important role in modeling and pre-

dicting the drought persistence (Oglesby and Erickson

1989; Seager et al. 2005; Cook et al. 2007). These findings

imply that precipitation deficit is a suitable variable for

detecting the drought onset, while the soil moisture

deficit is a better choice for capturing drought persis-

tence. The differences in the physical bases of drought-

related variables make it difficult, if not impossible, to

develop a successful drought monitoring and prediction

tool based on one single variable (or index) such as

precipitation or soil moisture. The use of a single index

to indicate the diversity and complexity of drought

conditions and impact is one of the major limitations to

drought monitoring (Wilhite 2005).

After examining and evaluating the existing drought

monitoring and prediction tools, it is recognized that

no single index can represent all aspects of meteoro-

logical, agricultural, and hydrological droughts and that

a multi-index approach should be utilized for opera-

tional drought monitoring and prediction (Quiring et al.

2007; Hao and AghaKouchak 2013). In fact, the lack of

a system/model for integration of drought-related in-

formation, including different climate variables and

drought indices and their interdependent relationships,

hampers reliable and timely detection of droughts and

their persistence.

The aim of this study is to introduce and evaluate a

modified version of a recently proposed multivariate stan-

dardized drought index (MSDI; Hao and AghaKouchak

2013) for drought monitoring by combining drought in-

formation fromprecipitation and soilmoisture. TheMSDI,

along with the commonly used standardized drought in-

dices (i.e., SPI and SSI), are derived using the National

Aeronautics and Space Administration’s (NASA) land-

only version of Modern-Era Retrospective Analysis for

Research and Applications (MERRA-Land) data and

validated with the U.S. Drought Monitor (USDM) data.

2. Method

In a recent study, Hao and AghaKouchak (2013)

proposed the MSDI for characterizing overall drought

conditions, taking into account precipitation deficit and

soil moisture deficit. This approach is an extension of the

commonly used SPI proposed by McKee et al. (1993),

extended to a bivariate model of precipitation and soil

moisture. Denoting the precipitation and soil moisture

at a specific time scale (e.g., 1 month or 6 months) as

random variables X and Y, respectively, the joint dis-

tribution of two variables (X and Y) can be expressed as

P(X# x,Y# y)5 p , (1)

where p denotes joint probability of the precipitation

and soil moisture. The MSDI can then be defined based

on the joint probability p as (Hao and AghaKouchak

2013):

MSDI5f21(p) , (2)

where f is the standard normal distribution function.

Similar to the SPI, the MSDI is derived from the (joint)

probability of the variables of interest, which can be

used to provide drought information over different time

scales (e.g., 1, 3, 6, and 12 months).

In themethodology presented inHao andAghaKouchak

(2013), the joint distribution in Eq. (1) is constructed

using multivariate parametric copulas (Nelsen 2006) and

requires rigorous parameter estimation and goodness-of-

fit tests. In this paper, an alternative method based on the

nonparametric joint distribution concept is introduced to

avoid making assumptions regarding the distribution

family and to alleviate the computational burden in fitting

parametric distributions.

An empirical joint probability in the bivariate case can

be estimated with the Gringorten plotting position for-

mula as (Gringorten 1963; Yue et al. 1999; Benestad and

Haugen 2007)

P(xk, yk)5
mk 2 0:44

n1 0:12
, (3)

where n is the number of the observation and mk is the

number of occurrences of the pair (xi, yi) for xi # xk and

yi # yk (1# i# n). Once the joint probability is derived

fromEq. (3), it will be used as input to Eq. (2) in order to

obtain the MSDI.

In the SPI, the gamma distribution is commonly used

to compute the cumulative probability distribution of

the precipitation, which will then be transformed using

the inverse of the standard normal distribution (McKee

et al. 1993). The soil moisture percentile or quantile is

commonly used as an agricultural drought index esti-

mated by fitting a parametric distribution such as the

beta (Sheffield et al. 2004; Sheffield and Wood 2007) or

Weibull (Shukla et al. 2011) distributions. An empirical

cumulative probability distribution such as the Weibull

plotting position formula has also been used to estimate
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the SPI or soil moisture percentiles (Edwards and McKee

1997;Andreadis et al. 2005;Wang et al. 2009). In this study,

we use an empirical approach to derive the marginal

probability using the univariate form of the Gringorten

plotting position formula expressed as (Gringorten 1963):

P(xi)5
i2 0:44

n1 0:12
, (4)

where i is the rank of the observed values from the

smallest and n is the number of the observations. In

other words, the SPI and SSI are derived by standard-

izing the marginal probabilities as described by the

Gringorten plotting position formula [Eq. (4)].

3. Data and metrics

Themonthly precipitation and soil moisture data from

MERRA-Land are used as input variables (Rienecker

et al. 2011). MERRA-Land data are generated by re-

running a revised version of the land component of

the MERRA system on a horizontal resolution of 2/38 3
½8 from 1 January 1980 onward (Reichle et al. 2011;

Reichle 2012). In this study, the monthly precipitation

(total surface precipitation) and soil moisture (total

profile soil moisture content) are used to derive the SPI,

SSI, and MSDI at different time scales for drought

monitoring. The SPI, SSI, and MSDI, used in this study

are available through the Global Integrated Drought

Monitoring and Prediction System (GIDMaPS; http://

drought.eng.uci.edu/).

The performances of these indices are evaluated

against the USDM (http://droughtmonitor.unl.edu/), which

is a composite product including climate indices, nu-

merical models, and inputs from regional and local ex-

perts from around the United States (Svoboda et al.

2002). While the USDM data cannot be regarded as

a metric of ground truth, it provides a baseline for eval-

uation of different drought indices and has been used in

a variety of studies (Svoboda et al. 2002; Anderson et al.

2011; Anderson et al. 2013). For this reason, the USDM

data are used as the reference observations in this study.

The USDM data are based on five categories of drought

types: D0 (abnormally dry), D1 (moderate drought),

D2 (severe drought), D3 (extreme drought), and D4

(exceptional drought) (Svoboda et al. 2002). The five

drought categories correspond to the following thresh-

olds of the SPI: 20.5 to 20.7 (D0), 20.8 to 21.2 (D1),

21.3 to 21.5 (D2), 21.6 to 21.9 (D3), and 22.0 or less

(D4). For the sake of cross comparison, the values of the

SPI, SSI, and MSDI are converted to the D0–D4 scale

based on the above thresholds.

Because the USDM drought information (reference

data) is weekly, the MERRA-Land–based drought in-

dices are compared to the USDM’s output closest to the

end of the month being analyzed. For example, for

January 2007, the USDM data of 30 January 2007 are

used for analysis, while for April 2007, the USDM data

of 1 May 2007 are utilized. The performance of the

MSDI in drought monitoring for the 2007 and 2012 U.S.

droughts is assessed, along with the performances of the

SPI and SSI for the 3- and 6-month time scales. In ad-

dition to visual comparison, the probability of detection

(POD), false alarm ratio (FAR), and critical success

index (CSI) are used as metrics for quantitative com-

parison of the SPI, SSI, and MSDI versus USDM data

(Ebert et al. 2007; Wilks 2011; Gourley et al. 2012).

For validation and cross comparison, the ‘‘observed’’

USDM data and ‘‘computed’’ SPI, SSI, and MSDI are

regridded onto a common 0.58 3 0.58 resolution grid

to compute the three metrics. Assuming a drought

threshold of D0 (or 20.5), each grid can be classified as

hit (H, observed drought detected), miss (M, observed

drought missed), false alarm (F, drought detected but

not observed), and null (no drought observed or de-

tected). The POD gives the fraction of observed drought

that is correctly detected: POD5H/(H1M). The FAR

describes the fraction of the detected drought that is

not confirmed by the observations: FAR 5 F/(H 1 F).

The CSI (or threat score), which combines different

aspects of the POD and FAR, describes the overall skill

of detection (here, drought): CSI 5 H/(H 1 M 1 F).

It should be noted that the climatology of the USDM

is not the same as that of the MERRA-Land–based

drought indices; hence, drought categories (severity

levels) from the two datasets may not be identical (i.e.,

a record drought in a 30-yr climatology may not be

a record drought in a 100-yr climatology). Furthermore,

while MSDI only incorporates precipitation and soil

moisture, USDM involves many other input variables

(e.g., reservoir levels, groundwater levels, and snow-

pack). In the westernUnited States, for example, snow is

an important factor to the water cycle and snow water

equivalent indicators are also blended into the USDM

data. This may cause differences in drought severity

levels in the MSDI and USDM. For these reasons, the

consistency of the spatial patterns in the two datasets is

evaluated, rather than the ability of the MSDI to re-

produce the USDM drought categories.

4. Results and discussion

A 33-yr record from January 1980 to December 2012

is used to construct the SPI, SSI, and MSDI. For a grid

cell in Texas (longitude 1008W and latitude 308N), the
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time series of the 6-month SPI, SSI, andMSDI using the

monthly precipitation and soil moisture fromMERRA-

Land data are presented in Fig. 1. As shown, the MSDI

determines the drought onset similar to the SPI and

describes the drought persistence and termination sim-

ilar to the SSI, which is consistent with the result from

the parametric MSDI (Hao and AghaKouchak 2013).

For example, for the 2005–08 drought, the onset is first

detected by the 6-month SPI and MSDI, while the 6-

month MSDI describes the drought persistence and

termination similar to the 6-month SSI.

It is worth pointing out that theMSDI may not lead to

the same drought severity as a univariate index such as

SPI. The reason is that the probability corresponding to

any given quantile of a joint distribution of two variables

is not identical to that of the univariate distribution of

each individual variable. In other words, the difference

between the MSDI and a univariate index such as SPI is

analogous to the difference between a bivariate distri-

bution of two random variables relative to the univariate

distributions of each individual variable. In the follow-

ing, the performances of the SPI, SSI, and MSDI in

drought monitoring are assessed for the 2007 and 2012

U.S. droughts with respect to USDM observations.

a. The 2007 drought

In Fig. 2, the first column displays the observed

USDM drought data for the period of January–June

2007, while the second, third, and fourth columns show

the 3-month SPI, SSI, andMSDI, respectively. Based on

the USDM data, in January 2007 (Fig. 2), the majority

of California and Arizona experienced D1 (moderate

drought) toD2 (severe drought). This drought condition

expanded to larger areas and became even more severe

(D2 and D3) by June 2007. As shown, the 3-month

MSDI reasonably describes theUSDM’s drought spatial

extent over the southwestern United States, while it

shows drought in Washington State in May, not con-

firmed by the USDM. In April 2007, a large area in the

western United States, including California, Nevada,

Utah, and Wyoming, experienced moderate to severe

drought conditions. The 3-month SPI only shows

drought conditions in very limited areas. The 3-month

SSI, on the other hand, indicates the drought conditions

in California and parts of Nevada and Arizona. The

3-month MSDI exhibits a larger area under drought

conditions than the SSI and is in better agreement with

the drought condition from the USDM. In Texas, from

January to June 2007, the 3-month SPI shows no drought

conditions while the USDM, 3-month SSI, and 3-month

MSDI indicate drought conditions in central Texas

from January to March. In this particular example,

the MSDI and SSI represent drought persistence more

reliably. As another example, in the southeastern United

States, the 3-month SPI indicates the drought onset

in January 2007, while the 3-month SSI does not in-

dicate the drought onset clearly. One can see that the

3-month MSDI captures the drought onset as early as

the 3-month SPI.

To illustrate the consistency of the MSDI across dif-

ferent time scales, the 6-month SPI, SSI, and MSDI are

presented in Fig. 3 for the period of January–June 2007.

One can see that the 6-month SPI improves represen-

tation of drought persistence in the western United

States (cf. Figs. 2 and 3). However, the drought con-

ditions in Texas (January–March 2007) are still not

FIG. 1. Sample time series of the 6-month SPI, SSI, and MSDI for a grid cell in Texas (1008W, 308N).
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represented by the 6-month SPI (see Fig. 3). Further-

more, in April 2007, the 6-month SPI does not indicate

drought in parts of Nevada, and the 6-month SSI does

not show drought in Utah (Fig. 3). For both Nevada and

Utah, the MSDI indicates drought consistent with the

USDM observations (Fig. 3).

One property of the MSDI is that, if the two variables

(here, precipitation and soil moisture) indicate drought

(show a deficit), the MSDI would lead to a more severe

drought condition than either SPI or SSI (Hao and

AghaKouchak 2013). For this reason, one can see that

the severity of the southwestern U.S. drought increases

in the 3- and 6-month MSDI more quickly than in the 3-

and 6-month SPI and SSI and may lead to more severe

drought conditions than either SPI or SSI, especially

when both show a deficit. At the same time, this prop-

erty of the MSDI can lead to detecting upcoming severe

droughts earlier, if both input variables (precipitation

and soil moisture) exhibit a departure from the clima-

tology (Hao and AghaKouchak 2013). Similar to other

drought indices, the MSDI may also lead to false

drought signals (e.g., Washington State in May 2007). In

some regions, the drought condition fromMSDI (or SPI

and SSI) is more severe than theUSDM, which is mainly

because of differences in the climatology. However,

by monitoring the drought evolution during the 2007

drought at different areas, one can see that the MSDI is

generally consistent with the USDM observations.

To quantitatively evaluate the SPI, SSI, and MSDI

against the USDM, the drought POD, FAR, and CSI of

FIG. 2. (left to right) USDM and MERRA-Land–based 3-month: SPI, SSI, and MSDI. (top to bottom) January–June 2007.
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the 3-month (Fig. 4, left) and 6-month (Fig. 4, right) SPI,

SSI, and MSDI are plotted. The presented POD, FAR,

and CSI are computed for all five drought categories

(D0–D4). The x axes display 12 months starting from

January 2007, whereas the y axes show the unitless

POD, FAR, and CSI. One can see that the POD values

of the MSDI are consistently higher than those of the

individual SPI and SSI for both the 3- and 6-month time

scales. For March 2007, for example, the POD of the

3-month MSDI is 0.8 (80%), whereas the POD of the

3-month SPI and SSI is around 0.5. At the 6-month scale,

the POD values of the SPI and SSI are quite similar,

ranging from 0.4 to 0.7 (Fig. 4, right), while the POD

values of the MSDI are consistently higher, ranging

from 0.6 to 0.9. As shown, at the 6-month scale, the FAR

values of the MSDI are similar to those of the SSI while,

at the 3-month time scale, the FAR values of the MSDI

are slightly higher than those of the SPI or SSI. The CSI,

which combines POD and FAR and provides an overall

measure of performance, indicates that theMSDI is more

consistent with the observedUSDMdata compared to the

SPI and SSI at both 3- and 6-month time scales.

b. The 2012 drought

In this section, the performances of the three indices

(SPI, SSI, and MSDI) are assessed for the 2012 drought

that affected a large portion of theUnited States. Figures 5

and 6 present the 2012 U.S. drought as described by

FIG. 3. As in Fig. 2, but using 6-month: SPI, SSI, and MSDI.
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the USDM and 3-month SPI, SSI, and MSDI for the pe-

riods of January–June and July–December, respectively.

During January–June 2012 (Fig. 5), the USDM indicates

a larger area under drought in the western United States

than either the SPI or SSI, while MSDI exhibits a better

agreement with the USDM with respect to the spatial

extent of drought (Fig. 5).

Considering the drought persistence from January

to June 2012 (Fig. 5) in the western United States, one

can see that the 3-month SPI does not adequately de-

scribe the drought persistence as the drought severity

from 3-month SPI lessens significantly in California

by April 2012. The 3-month SSI and MSDI, however,

describe the drought persistence reasonably well and

similar to the USDM, although the drought condition in

California in June is not consistent with the USDM. The

drought condition in Arizona is first detected by the SPI

in February 2012, which persists to June 2012 (Fig. 5).

The 3-month SSI detects the drought onset in Arizona

1 month later (March 2012). As shown in Fig. 5, the

3-month MSDI describes the drought onset in Arizona

as early as the SPI and indicates drought persistence

similar to the SSI. A notable drought pattern during the

summer of 2012 is the quick onset of the drought con-

dition in the high plains fromMay to June. In this period,

the drought severity ramped up and reached even ex-

ceptional drought conditions. The 3-month MSDI is in

better agreement with the USDM with respect to the

drought severity and spatial extent in summer 2012. For

example, in July 2012, the 3-month SPI does not show

the USDM drought condition in Arizona, and the SSI

does not indicate the drought condition in a large part

of California. The 3-month MSDI, however, shows the

drought condition in both California and Arizona in

July 2012. Notice that the drought severity from the

MSDI is more severe than that of the USDM in certain

areas (e.g., high plains). Overall, the drought spatial

extent from the 3-month MSDI is in better agreement

with theUSDMcomparedwith the 3-month SPI and SSI

in summer 2012.

The USDM and the 6-month SPI, SSI, and MSDI are

plotted in Figs. 7 and 8, respectively. One can see that

the persistence of the drought conditions (January–

June) in southern Texas is not shown well from the

6-month SPI. The 6-month MSDI and SSI generally

indicate the observed drought conditions in Texas as

FIG. 4. (top to bottom) Drought POD, FAR, and CSI for the (left) 3-month and (right) 6-month SPI, SSI, and MSDI for

January–December 2007.
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described by the USDM. As the drought develops in the

second half of 2012 (Fig. 8), the 6-month MSDI de-

scribes the 2012 drought’s spatial extent more consis-

tently with the USDM compared to the SPI and SSI.

These results confirm the previous findings for the 2007

drought that the MSDI is generally in better agreement

with the USDM data with respect to the drought onset,

persistence, and spatial extent.

Comparing theMSDIwith theUSDMobservations in

Figs. 5–8, one can see that, at some locations, the MSDI

drought is more severe than the USDM observations. It

is worth pointing out that the MSDI increases the

drought severity if both the SPI and SSI show deficits. As

stated previously, the drought severity from USDM and

MSDI (or SPI and SSI) may not be identical because of

differences in input data climatology. For this reason,

the purpose of this validation is to assess the consistency

of the spatial patterns of drought from the MSDI with

respect to the USDM observations. For a quantitative

comparison, the drought POD, FAR, and CSI for 3-

month (left) and 6-month (right) drought indices, in-

cluding all drought categories (D0–D4), are presented in

Fig. 9. Similar to the 3-month time scale, the POD and

CSI values of the 6-monthMSDI are consistently higher

than those of the SPI and SSI. The FAR values of the

3-month MSDI are relatively higher than the other two

indices, while the FAR values of the 6-month MSDI

closely mimic those of the SSI.

FIG. 5. As in Fig. 2, but for January–June 2012.
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5. Conclusions and remarks

In the past decade, major drought events have been

recorded in the United States, the Horn of Africa,

Australia, Eurasia, and the Middle East, leading to

much-needed attention to methods of analysis of ex-

tremes in a changing climate (AghaKouchak et al. 2013).

Reliable drought monitoring is fundamental to drought

mitigation efforts and water resources management.

Thus far, a number of drought indices have been used

for monitoring and predicting droughts. Given the com-

plexity of drought phenomena in their onset, develop-

ment, and termination, drought monitoring based on a

single variablemay not be sufficient for detecting drought

conditions promptly and reliably. This study outlines

a multivariate, multi-index drought monitoring frame-

work, namely, the MSDI, for describing droughts based

on the states of multiple variables, such as precipitation

and soil moisture. A nonparametric approach is used for

describing the joint distribution of precipitation and soil

moisture to derive MSDI for drought monitoring. The

MSDI, along with the SPI and SSI, are used to describe

two major recent droughts: the 2007 and 2012 U.S.

droughts. The results are then validated with the USDM

data for spatiotemporal consistency of the univariate and

multivariate indices.

Based on the case studies, the MSDI generally cap-

tures the drought onset similar to the SPI and drought

FIG. 6. As in Fig. 2, but for July–December 2012.
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persistence similar to the SSI. This implies that the

MSDI is capable of detecting the drought onset and

persistence, which combines the properties of the SPI

and SSI. The MSDI is also shown to improve the de-

tection of the drought spatial extent in certain cases

when the individual SPI or SSI does not adequately in-

dicate the drought spatial extent. The results indicate

that the MSDI exhibits higher probability of detection

(POD) and critical success index (CSI) compared to the

individual SPI and SSI in both 3- and 6-month time

scales. However, the false alarm ratio (FAR) of droughts

indicated by the MSDI is relatively higher than the SPI or

SSI. The results show that, in both case studies, the spatial

extents of the MSDI drought conditions are generally in

good agreement with the USDM observations. However,

relative to USDM, theMSDI may exaggerate the drought

severity in certain cases, especially when both precipita-

tion and soil moisture indicate a deficit. This is primarily

because 1) the climatology of the MERRA-based indices

(i.e., SPI, SSI, and MSDI) is shorter than that of the

USDM, which involves long-term, ground-based obser-

vations [i.e., a record drought in the MSDI (D4) derived

from 33yr of climatology may not be a record drought in

the USDM, which involves a much longer record of ob-

servations], and 2) the USDM integrates numerous input

variables, including subjective inputs from local climatol-

ogists, while the MSDI is based exclusively on precip-

itation and soil moisture conditions.

FIG. 7. As in Fig. 3, but for January–June 2012.
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The objective of this study is not to show the weak-

nesses of the SPI or SSI, but rather, to emphasize the

fact that combining information from multiple variables

(here, precipitation and soil moisture) would improve

drought monitoring. While precipitation and soil mois-

ture are generally used for characterizing the mete-

orological and agricultural droughts, we propose the

multi-index MSDI as a model that can jointly describe

both drought types. In addition to precipitation and soil

moisture, the proposed methodology can be applied to

other drought-related variables such as runoff, temper-

ature, and evapotranspiration. The two variables within

the MSDI can be of different time scales (e.g., 6-month

precipitation and 1-month soil moisture), and the drought

threshold of MSDI can be different than the one used

in this paper. Efforts are underway to extend the MSDI

concept by integrating more hydroclimatic variables

and to use theMSDI concept for drought prediction and

early warning.

The authors acknowledge that, if neither precipitation

nor soil moisture (or any other combinations of vari-

ables) are reliable, the joint analysis of droughts would

not lead to any improvement in drought monitoring.

In fact, the MSDI can potentially improve drought

monitoring if each of the selected drought-related

variables can capture certain aspects of droughts. The

proposed methodology requires long-term (at least 30 yr

or more) observations to derive the joint distribution of

precipitation and soil moisture, and a short record of

observations could lead to biases in the MSDI estimates.

FIG. 8. As in Fig. 3, but for July–December 2012.
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We emphasize that the MSDI is not meant to replace

the USDMor any other drought index. It is our view that

drought monitoring and prediction should be based on

multiple sources of information. Hence, we propose the

MSDI to be used as an additional source of informa-

tion that can potentially provide more insights into the

drought monitoring.
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